IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01432629.html
   My bibliography  Save this paper

Dynamic agricultural household bio-economic simulator (DAHBSIM) model description: biosight project technical report

Author

Listed:
  • Guillermo Flichman

    (CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes)

  • Hatem Belhouchette

    (CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes)

  • Adam M. Komarek

    (IFPRI - International Food Policy Research Institute [Washington] - CGIAR - Consultative Group on International Agricultural Research [CGIAR])

  • Sophie Drogue

    (UMR MOISA - Marchés, Organisations, Institutions et Stratégies d'Acteurs - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • James Hawkins

    (IFPRI - International Food Policy Research Institute [Washington] - CGIAR - Consultative Group on International Agricultural Research [CGIAR])

  • Roza Chenoune

    (CIHEAM-IAMM - Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier - CIHEAM - Centre International de Hautes Études Agronomiques Méditerranéennes)

  • Siwa Msangi

    (IFPRI - International Food Policy Research Institute [Washington] - CGIAR - Consultative Group on International Agricultural Research [CGIAR])

Abstract

DAHBSIM is a dynamic, bio-economic model of agricultural households that was designed to be applied to a rural, developing country-setting, for the purpose of addressing questions around the biophysical constraints to on-farm agricultural productivity, and the whole-farm implications of alternative strategies to sustainable agricultural intensification. The model links socio-economic and biophysical aspects, in order to better illustrate the environmental and human welfare implications of different agricultural production practices, as they are influenced by policy-driven changes in prices of inputs or outputs, or by changes in the physical environment.

Suggested Citation

  • Guillermo Flichman & Hatem Belhouchette & Adam M. Komarek & Sophie Drogue & James Hawkins & Roza Chenoune & Siwa Msangi, 2016. "Dynamic agricultural household bio-economic simulator (DAHBSIM) model description: biosight project technical report," Working Papers hal-01432629, HAL.
  • Handle: RePEc:hal:wpaper:hal-01432629
    Note: View the original document on HAL open archive server: https://hal.science/hal-01432629
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01432629/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Semaan, Josephine & Flichman, Guillermo & Scardigno, Alessandra & Steduto, Pasquale, 2007. "Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 94(2), pages 357-367, May.
    2. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    3. Blanco-Gutiérrez, Irene & Varela-Ortega, Consuelo & Flichman, Guillermo, 2011. "Cost-effectiveness of groundwater conservation measures: A multi-level analysis with policy implications," Agricultural Water Management, Elsevier, vol. 98(4), pages 639-652, February.
    4. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.
    5. John M. Antle, 1987. "Econometric Estimation of Producers' Risk Attitudes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 509-522.
    6. Ecker, Olivier & Qaim, Matin, 2011. "Analyzing Nutritional Impacts of Policies: An Empirical Study for Malawi," World Development, Elsevier, vol. 39(3), pages 412-428, March.
    7. Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
    8. Bouman, B. A. M. & van Keulen, H. & van Laar, H. H. & Rabbinge, R., 1996. "The `School of de Wit' crop growth simulation models: A pedigree and historical overview," Agricultural Systems, Elsevier, vol. 52(2-3), pages 171-198.
    9. Chavas, Jean-Paul, 2004. "Risk Analysis in Theory and Practice," Elsevier Monographs, Elsevier, edition 1, number 9780121706210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komarek, Adam M. & Drogue, Sophie & Chenoune, Roza & Hawkins, James & Msangi, Siwa & Belhouchette, Hatem & Flichman, Guillermo, 2017. "Agricultural household effects of fertilizer price changes for smallholder farmers in central Malawi," Agricultural Systems, Elsevier, vol. 154(C), pages 168-178.
    2. Adam M. Komarek & Siwa Msangi, 2019. "Effect of changes in population density and crop productivity on farm households in Malawi," Agricultural Economics, International Association of Agricultural Economists, vol. 50(5), pages 615-628, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    2. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    3. Komarek, Adam M. & Drogue, Sophie & Chenoune, Roza & Hawkins, James & Msangi, Siwa & Belhouchette, Hatem & Flichman, Guillermo, 2017. "Agricultural household effects of fertilizer price changes for smallholder farmers in central Malawi," Agricultural Systems, Elsevier, vol. 154(C), pages 168-178.
    4. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    5. Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.
    6. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    7. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    8. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    9. Lally, Breda & van Rensburg, Tom M., 2014. "Reducing nitrogen applications on Irish dairy farms: effectiveness and efficiency of different strategies," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(1), October.
    10. Mikémina Pilo & Nicolas Gerber & Tobias Wünscher, 2021. "Impacts of Adaptation to Climate Change on Farmers’ Income in the Savanna Region of Togo," Revue économique, Presses de Sciences-Po, vol. 72(3), pages 421-442.
    11. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    12. Jeder, Houcine & Sghaier, Mongi & Louhichi, Kamel & Reidsma, Pytrik, 2014. "Bio-economic modelling to assess the impact of water pricing policies at the farm level in the Oum Zessar watershed, southern Tunisia," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(2), pages 1-19.
    13. Linden McBride & Leah Bevis, 2019. "Working Paper 311 - Risk, Returns, and Welfare," Working Paper Series 2437, African Development Bank.
    14. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    15. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    16. Syster C. Maart-Noelck & Oliver Musshoff, 2014. "Measuring the risk attitude of decision-makers: are there differences between groups of methods and persons?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(3), pages 336-352, July.
    17. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    18. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    19. Sanglestsawai, Santi & Rodriguez, Divina Gracia P. & Rejesus, Roderick M. & Yorobe, Jose M., 2017. "Production Risk, Farmer Welfare, and Bt Corn in the Philippines," Agricultural and Resource Economics Review, Cambridge University Press, vol. 46(3), pages 507-528, December.
    20. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01432629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.