IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v140y2015icp26-39.html
   My bibliography  Save this article

MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics

Author

Listed:
  • Chopin, Pierre
  • Doré, Thierry
  • Guindé, Loïc
  • Blazy, Jean-Marc

Abstract

To understand the effects of policy changes on organisations and compositions of cropping systems at regional scale and their contribution to the sustainable development of regions, we built a regional, spatially explicit, multi-scale, bioeconomic model called MOSAICA. This model explicitly incorporates information at field, farm, sub-regional and regional scales to provide cropping system mosaics by way of regional optimisation of the sum of individual farmer's utilities under field, farm and territory biophysical and socio-economic constraints. Its generic structure means it can be used in different regions with geographic information on the location of the field and farm, data on cropping system performance, on location factors and on policy schemes. We used the model in Guadeloupe to test the impact of three scenarios of change on the agricultural subsidy regimes. The model produced three cropping system mosaics which reduced the area under banana and sugarcane, turned specialised banana and sugarcane farming systems into breeding systems while improving the overall contribution of agriculture to sustainable development. The spatially explicit results of changes in ecosystem services, and in farming systems with MOSAICA make it an appropriate decision-aid tool for regional planning.

Suggested Citation

  • Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.
  • Handle: RePEc:eee:agisys:v:140:y:2015:i:c:p:26-39
    DOI: 10.1016/j.agsy.2015.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15300184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laborte, Alice G. & Van Ittersum, Martin K. & Van den Berg, Marrit M., 2007. "Multi-scale analysis of agricultural development: A modelling approach for Ilocos Norte, Philippines," Agricultural Systems, Elsevier, vol. 94(3), pages 862-873, June.
    2. Bureau, Jean-Christophe & Guyomard, Herve & Requillart, Vincent, 2001. "On inefficiencies in the European sugar regime," Journal of Policy Modeling, Elsevier, vol. 23(6), pages 659-667, August.
    3. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    4. Lidia Ceriani & Paolo Verme, 2012. "The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(3), pages 421-443, September.
    5. Mosnier, Claire & Ridier, Aude & Kphaliacos, Charilaos & Carpy-Goulard, Françoise, 2009. "Economic and environmental impact of the CAP mid-term review on arable crop farming in South-western France," Ecological Economics, Elsevier, vol. 68(5), pages 1408-1416, March.
    6. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    7. William Lin & G. W. Dean & C. V. Moore, 1974. "An Empirical Test of Utility vs. Profit Maximization in Agricultural Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 56(3), pages 497-508.
    8. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    9. Dogliotti, S. & van Ittersum, M.K. & Rossing, W.A.H., 2005. "A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 86(1), pages 29-51, October.
    10. Szvetlana Acs & Paul Berentsen & Ruud Huirne & Marcel van Asseldonk, 2009. "Effect of yield and price risk on conversion from conventional to organic farming ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 393-411, July.
    11. Arriaza, M. & Gomez-Limon, J. A., 2003. "Comparative performance of selected mathematical programming models," Agricultural Systems, Elsevier, vol. 77(2), pages 155-171, August.
    12. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    13. Djanibekov, Nodir & Sommer, Rolf & Djanibekov, Utkur, 2013. "Evaluation of effects of cotton policy changes on land and water use in Uzbekistan: Application of a bio-economic farm model at the level of a water users association," Agricultural Systems, Elsevier, vol. 118(C), pages 1-13.
    14. van Ittersum, Martin K. & Ewert, Frank & Heckelei, Thomas & Wery, Jacques & Alkan Olsson, Johanna & Andersen, Erling & Bezlepkina, Irina & Brouwer, Floor & Donatelli, Marcello & Flichman, Guillermo & , 2008. "Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS)," Agricultural Systems, Elsevier, vol. 96(1-3), pages 150-165, March.
    15. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.
    16. Blazy, Jean-Marc & Ozier-Lafontaine, Harry & Doré, Thierry & Thomas, Alban & Wery, Jacques, 2009. "A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 30-41, June.
    17. Aubry, C. & Papy, F. & Capillon, A., 1998. "Modelling decision-making processes for annual crop management," Agricultural Systems, Elsevier, vol. 56(1), pages 45-65, January.
    18. Leite, João Guilherme Dal Belo & Silva, João Vasco & van Ittersum, Martin K., 2014. "Integrated assessment of biodiesel policies aimed at family farms in Brazil," Agricultural Systems, Elsevier, vol. 131(C), pages 64-76.
    19. Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
    20. Chavez, M.D. & Berentsen, P.B.M. & Oude Lansink, A.G.J.M., 2014. "Analyzing diversification possibilities on specialized tobacco farms in Argentina using a bio-economic farm model," Agricultural Systems, Elsevier, vol. 128(C), pages 35-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahashi, Taro & Maruya, Kaori & Nakajima, Toru, 2016. "Non-farmers’ willingness to farm: a large-scale choice experiment to identify policy options that can induce new entry to the agricultural industry," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236368, Agricultural Economics Society.
    2. Jahel, Camille & Baron, Christian & Vall, Eric & Karambiri, Medina & Castets, Mathieu & Coulibaly, Kalifa & Bégué, Agnès & Lo Seen, Danny, 2017. "Spatial modelling of agro-ecosystem dynamics across scales: A case in the cotton region of West-Burkina Faso," Agricultural Systems, Elsevier, vol. 157(C), pages 303-315.
    3. Julia Jouan & Aude Ridier & Matthieu Carof, 2020. "Methodological and Ideological Options SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability," Post-Print hal-02612963, HAL.
    4. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    5. Selbonne, S. & Guindé, L. & Belmadani, A. & Bonine, C. & L. Causeret, F. & Duval, M. & Sierra, J. & Blazy, J.M., 2022. "Designing scenarios for upscaling climate-smart agriculture on a small tropical island," Agricultural Systems, Elsevier, vol. 199(C).
    6. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    7. Dupré, Marie & Blazy, Jean-Marc & Michels, Thierry & Le Gal, Pierre-Yves, 2021. "Supporting policymakers in designing agricultural policy instruments: A participatory approach with a regional bioeconomic model in La Réunion (France)," Land Use Policy, Elsevier, vol. 100(C).
    8. Jouan, Julia & Ridier, Aude & Carof, Matthieu, 2020. "SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability," Ecological Economics, Elsevier, vol. 175(C).
    9. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    10. Julia Jouan & Aude Ridier & Matthieu Carof, 2018. "SYNERGY: a bio economic model assessing the economic and environmental impacts of increased regional protein self-sufficiency," Post-Print hal-01937084, HAL.
    11. Wies, Germán & Groot, Jeroen C.J. & Martinez-Ramos, Miguel, 2023. "In highly-biodiverse tropical landscapes, multiple-objective optimization reveals opportunities for increasing both conservation and agricultural production," Ecological Modelling, Elsevier, vol. 483(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    2. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    3. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    4. Dupré, Marie & Blazy, Jean-Marc & Michels, Thierry & Le Gal, Pierre-Yves, 2021. "Supporting policymakers in designing agricultural policy instruments: A participatory approach with a regional bioeconomic model in La Réunion (France)," Land Use Policy, Elsevier, vol. 100(C).
    5. Leite, João Guilherme Dal Belo & Silva, João Vasco & van Ittersum, Martin K., 2014. "Integrated assessment of biodiesel policies aimed at family farms in Brazil," Agricultural Systems, Elsevier, vol. 131(C), pages 64-76.
    6. Aurbacher, Joachim & Parker, Phillip S. & Calberto Sánchez, Germán A. & Steinbach, Jennifer & Reinmuth, Evelyn & Ingwersen, Joachim & Dabbert, Stephan, 2013. "Influence of climate change on short term management of field crops – A modelling approach," Agricultural Systems, Elsevier, vol. 119(C), pages 44-57.
    7. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    8. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    9. Ira R. Cooke & Elizabeth H. A. Mattison & Eric Audsley & Alison P. Bailey & Robert P. Freckleton & Anil R. Graves & Joe Morris & Simon A. Queenborough & Daniel L. Sandars & Gavin M. Siriwardena & Paul, 2013. "Empirical Test of an Agricultural Landscape Model," SAGE Open, , vol. 3(2), pages 21582440134, April.
    10. Stefano Gaudino & Pytrik Reidsma & Argyris Kanellopoulos & Dario Sacco & Martin K. Van Ittersum, 2018. "Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy," Agriculture, MDPI, vol. 8(9), pages 1-27, September.
    11. Mugurel Ionel JITEA & Diana Elena DUMITRAȘ & Vasile Alexandru SIMU, 2015. "An ex-ante impact assessment of the Common Agricultural Policy reform in the North-Western Romania," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(2), pages 88-103.
    12. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    13. Louhichi, Kamel & Gomez y Paloma, Sergio, 2014. "A farm household model for agri-food policy analysis in developing countries: Application to smallholder farmers in Sierra Leone," Food Policy, Elsevier, vol. 45(C), pages 1-13.
    14. Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
    15. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    16. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    17. El Ansari, Loubna & Chenoune, Roza & Yigezu, Yigezu A. & Komarek, Adam M. & Gary, Christian & Belhouchette, Hatem, 2023. "Intensification options in cereal-legume production systems generate trade-offs between sustainability pillars for farm households in northern Morocco," Agricultural Systems, Elsevier, vol. 212(C).
    18. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    19. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    20. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:140:y:2015:i:c:p:26-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.