IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp587-596.html
   My bibliography  Save this article

Impact of perennial energy crops income variability on the crop selection of risk averse farmers

Author

Listed:
  • Alexander, Peter
  • Moran, Dominic

Abstract

The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data.

Suggested Citation

  • Alexander, Peter & Moran, Dominic, 2013. "Impact of perennial energy crops income variability on the crop selection of risk averse farmers," Energy Policy, Elsevier, vol. 52(C), pages 587-596.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:587-596
    DOI: 10.1016/j.enpol.2012.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.10.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sherrington, Chris & Moran, Dominic, 2010. "Modelling farmer uptake of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 38(7), pages 3567-3578, July.
    2. Hans P. Binswanger, 1980. "Attitudes Toward Risk: Experimental Measurement in Rural India," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 395-407.
    3. Pannell, David J., 1997. "Sensitivity analysis of normative economic models: theoretical framework and practical strategies," Agricultural Economics, Blackwell, vol. 16(2), pages 139-152, May.
    4. Arriaza, M. & Gomez-Limon, J. A., 2003. "Comparative performance of selected mathematical programming models," Agricultural Systems, Elsevier, vol. 77(2), pages 155-171, August.
    5. Semaan, Josephine & Flichman, Guillermo & Scardigno, Alessandra & Steduto, Pasquale, 2007. "Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 94(2), pages 357-367, May.
    6. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    7. Michael T. Wallace & Joan E. Moss, 2002. "Farmer Decision‐Making with Conflicting Goals: A Recursive Strategic Programming Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 53(1), pages 82-100, March.
    8. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    9. Lars Brink & Bruce McCarl, 1978. "The Tradeoff between Expected Return and Risk Among Cornbelt Farmers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 60(2), pages 259-263.
    10. Earl O. Heady, 1954. "Simplified Presentation and Logical Aspects of Linear Programming Technique," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 36(5), pages 1035-1048.
    11. Chavas, Jean-Paul, 2000. "On information and market dynamics: The case of the U.S. beef market," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 833-853, June.
    12. David R. Oglethorpe, 1995. "Sensitivity Of Farm Plans Under Risk‐Averse Behaviour: A Note On The Environmental Implications," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(2), pages 227-232, May.
    13. R. Norgaard & T. Killeen, 1980. "Expected Utility and the Truncated Normal Distribution," Management Science, INFORMS, vol. 26(9), pages 901-909, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    2. Mulugeta, Elias & Greig, Alastair, 2022. "The economic impacts of grassland reseeding in Northern Ireland," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321180, Agricultural Economics Society - AES.
    3. Glithero, N.J. & Wilson, P. & Ramsden, S.J., 2015. "Optimal combinable and dedicated energy crop scenarios for marginal land," Applied Energy, Elsevier, vol. 147(C), pages 82-91.
    4. Zafeiriou, Eleni & Petridis, Konstantinos & Karelakis, Christos & Arabatzis, Garyfallos, 2016. "Optimal combination of energy crops under different policy scenarios; The case of Northern Greece," Energy Policy, Elsevier, vol. 96(C), pages 607-616.
    5. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    6. Jeddi, Samir & Lencz, Dominic & Wildgrube, Theresa, 2021. "Complementing carbon prices with Carbon Contracts for Difference in the presence of risk - When is it beneficial and when not?," EWI Working Papers 2021-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 16 Aug 2022.
    7. Zinnanti, Cinzia & Schimmenti, Emanuele & Borsellino, Valeria & Paolini, Giulio & Severini, Simone, 2019. "Economic performance and risk of farming systems specialized in perennial crops: An analysis of Italian hazelnut production," Agricultural Systems, Elsevier, vol. 176(C).
    8. Xue, Shuai & Kalinina, Olena & Lewandowski, Iris, 2015. "Present and future options for Miscanthus propagation and establishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1233-1246.
    9. Adams, P.W.R. & Lindegaard, K., 2016. "A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 188-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    2. Lien, Gudbrand, 2002. "Non-parametric estimation of decision makers' risk aversion," Agricultural Economics, Blackwell, vol. 27(1), pages 75-83, May.
    3. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    4. Pannell, David J. & Malcolm, Bill & Kingwell, Ross S., 2000. "Are we risking too much? Perspectives on risk in farm modelling," Agricultural Economics, Blackwell, vol. 23(1), pages 69-78, June.
    5. Janssen, Sander J.C. & van Ittersum, Martin K., 2007. "Assessing farmer behaviour as affected by policy and technological innovations: bio-economic farm models," Reports 9293, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    6. Lally, Breda & van Rensburg, Tom M., 2014. "Reducing nitrogen applications on Irish dairy farms: effectiveness and efficiency of different strategies," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(1), October.
    7. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    8. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.
    9. Dörschner, T. & Mußhoff, O., 2014. "Does the Risk Attitude Influence and Farmers’ Willingness to Participate in Agri-Environmental Measures? – A Normative Approach to Evaluate Ecosystem Services," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.
    10. John Griffin, 2015. "Risk Premia and Knightian Uncertainty in an Experimental Market Featuring a Long-Lived Asset," Fordham Economics Discussion Paper Series dp2015-01, Fordham University, Department of Economics.
    11. Stelios Rozakis & Alexandra Sintori & Konstantinos Tsiboukas, 2009. "Utility-derived Supply Function of Sheep Milk: The Case of Etoloakarnania, Greece," Working Papers 2009-11, Agricultural University of Athens, Department Of Agricultural Economics.
    12. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    13. Chebil, A. & Frija, A. & Thabet, C., 2012. "Irrigation water pricing between governmental policies and farmers’ perception: Implications for green-houses horticultural production in Teboulba (Tunisia)," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(2), pages 1-11.
    14. Arnade, Carlos Anthony & Cooper, Joseph C., 2012. "Acreage Response under Varying Risk Preferences," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(3), pages 1-17.
    15. Zafeiriou, Eleni & Petridis, Konstantinos & Karelakis, Christos & Arabatzis, Garyfallos, 2016. "Optimal combination of energy crops under different policy scenarios; The case of Northern Greece," Energy Policy, Elsevier, vol. 96(C), pages 607-616.
    16. Reidsma, Pytrik & Janssen, Sander & Jansen, Jacques & van Ittersum, Martin K., 2018. "On the development and use of farm models for policy impact assessment in the European Union – A review," Agricultural Systems, Elsevier, vol. 159(C), pages 111-125.
    17. Eidman, V., 1989. "Quantifying and managing risk in agriculture," 1989 Annual Conference, September 25-27, Bloemfontein, South Africa 314723, Agricultural Economics Association of South Africa (AEASA).
    18. Christina Moulogianni, 2022. "Comparison of Selected Mathematical Programming Models Used for Sustainable Land and Farm Management," Land, MDPI, vol. 11(8), pages 1-18, August.
    19. Guillermo Flichman & Hatem Belhouchette & Adam M. Komarek & Sophie Drogue & James Hawkins & Roza Chenoune & Siwa Msangi, 2016. "Dynamic agricultural household bio-economic simulator (DAHBSIM) model description: biosight project technical report," Working Papers hal-01432629, HAL.
    20. Griffin, John, 2017. "Risk premia and ambiguity in an experimental market featuring a long-lived asset," Journal of Behavioral and Experimental Finance, Elsevier, vol. 15(C), pages 21-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:587-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.