IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v76y2015icp87-102.html
   My bibliography  Save this article

Forms of representation for simple games: Sizes, conversions and equivalences

Author

Listed:
  • Molinero, Xavier
  • Riquelme, Fabián
  • Serna, Maria

Abstract

Simple games are cooperative games in which the benefit that a coalition may have is always binary, i.e., a coalition may either win or loose. This paper surveys different forms of representation of simple games, and those for some of their subfamilies like regular games and weighted games. We analyze the forms of representations that have been proposed in the literature based on different data structures for sets of sets. We provide bounds on the computational resources needed to transform a game from one form of representation to another one. This includes the study of the problem of enumerating the fundamental families of coalitions of a simple game. In particular we prove that several changes of representation that require exponential time can be solved with polynomial-delay and highlight some open problems.

Suggested Citation

  • Molinero, Xavier & Riquelme, Fabián & Serna, Maria, 2015. "Forms of representation for simple games: Sizes, conversions and equivalences," Mathematical Social Sciences, Elsevier, vol. 76(C), pages 87-102.
  • Handle: RePEc:eee:matsoc:v:76:y:2015:i:c:p:87-102
    DOI: 10.1016/j.mathsocsci.2015.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016548961500044X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2015.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolus, Stefan, 2011. "Power indices of simple games and vector-weighted majority games by means of binary decision diagrams," European Journal of Operational Research, Elsevier, vol. 210(2), pages 258-272, April.
    2. EINY, Ezra & LEHRER, Ehud, 1989. "Regular simple games," LIDAM Reprints CORE 850, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Einy, Ezra & Lehrer, Ehud, 1989. "Regular Simple Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 195-207.
    4. Sudholter, Peter, 1996. "Star-shapedness of the kernel for homogeneous games," Mathematical Social Sciences, Elsevier, vol. 32(3), pages 179-214, December.
    5. Ehud Kalai & Eitan Zemel, 1982. "Totally Balanced Games and Games of Flow," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 476-478, August.
    6. Michael O. Ball & J. Scott Provan, 1988. "Disjoint Products and Efficient Computation of Reliability," Operations Research, INFORMS, vol. 36(5), pages 703-715, October.
    7. Algaba, E. & Bilbao, J. M. & Fernandez Garcia, J. R. & Lopez, J. J., 2003. "Computing power indices in weighted multiple majority games," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 63-80, August.
    8. Mark Voorneveld & Sofia Grahn, 2002. "Cost allocation in shortest path games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(2), pages 323-340, November.
    9. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    10. Berghammer, Rudolf & Bolus, Stefan, 2012. "On the use of binary decision diagrams for solving problems on simple games," European Journal of Operational Research, Elsevier, vol. 222(3), pages 529-541.
    11. Peter C. Fishburn, 1969. "Preferences, Summation, and Social Welfare Functions," Management Science, INFORMS, vol. 16(3), pages 179-186, November.
    12. Markus Behle, 2008. "On threshold BDDs and the optimal variable ordering problem," Journal of Combinatorial Optimization, Springer, vol. 16(2), pages 107-118, August.
    13. Vito Fragnelli & Ignacio García-Jurado & Luciano Méndez-Naya, 2000. "On shortest path games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 251-264, November.
    14. Carreras, Francesc & Freixas, Josep, 1996. "Complete simple games," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 139-155, October.
    15. Josep Freixas & Dorota Marciniak, 2009. "A minimum dimensional class of simple games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 407-414, December.
    16. Deineko, Vladimir G. & Woeginger, Gerhard J., 2006. "On the dimension of simple monotonic games," European Journal of Operational Research, Elsevier, vol. 170(1), pages 315-318, April.
    17. Josep Freixas & Xavier Molinero, 2009. "On the existence of a minimum integer representation for weighted voting systems," Annals of Operations Research, Springer, vol. 166(1), pages 243-260, February.
    18. Molinero, Xavier & Riquelme, Fabián & Serna, Maria, 2015. "Cooperation through social influence," European Journal of Operational Research, Elsevier, vol. 242(3), pages 960-974.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molinero, Xavier & Riquelme, Fabián & Roura, Salvador & Serna, Maria, 2023. "On the generalized dimension and codimension of simple games," European Journal of Operational Research, Elsevier, vol. 306(2), pages 927-940.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molinero, Xavier & Riquelme, Fabián & Serna, Maria, 2015. "Cooperation through social influence," European Journal of Operational Research, Elsevier, vol. 242(3), pages 960-974.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    3. Freixas, Josep & Kurz, Sascha, 2014. "On minimum integer representations of weighted games," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 9-22.
    4. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    5. Josep Freixas & Marc Freixas & Sascha Kurz, 2017. "On the characterization of weighted simple games," Theory and Decision, Springer, vol. 83(4), pages 469-498, December.
    6. Sascha Kurz & Nikolas Tautenhahn, 2013. "On Dedekind’s problem for complete simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 411-437, May.
    7. René Brink & Dinko Dimitrov & Agnieszka Rusinowska, 2021. "Winning coalitions in plurality voting democracies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(3), pages 509-530, April.
    8. Josep Freixas & Sascha Kurz, 2014. "On $${\alpha }$$ α -roughly weighted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(3), pages 659-692, August.
    9. Bhattacherjee, Sanjay & Chakravarty, Satya R. & Sarkar, Palash, 2022. "A General Model for Multi-Parameter Weighted Voting Games," MPRA Paper 115407, University Library of Munich, Germany.
    10. Somdeb Lahiri, 2021. "Pattanaik's axioms and the existence of winners preferred with probability at least half," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 109-122.
    11. Josep Freixas & Montserrat Pons, 2022. "A critical analysis on the notion of power," Annals of Operations Research, Springer, vol. 318(2), pages 911-933, November.
    12. Berghammer, Rudolf & Bolus, Stefan, 2012. "On the use of binary decision diagrams for solving problems on simple games," European Journal of Operational Research, Elsevier, vol. 222(3), pages 529-541.
    13. Molinero, Xavier & Riquelme, Fabián & Roura, Salvador & Serna, Maria, 2023. "On the generalized dimension and codimension of simple games," European Journal of Operational Research, Elsevier, vol. 306(2), pages 927-940.
    14. Freixas, Josep & Kaniovski, Serguei, 2014. "The minimum sum representation as an index of voting power," European Journal of Operational Research, Elsevier, vol. 233(3), pages 739-748.
    15. O’Dwyer, Liam & Slinko, Arkadii, 2017. "Growth of dimension in complete simple games," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 2-8.
    16. Sascha Kurz & Stefan Napel, 2014. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
    17. Josep Freixas & Sascha Kurz, 2019. "Bounds for the Nakamura number," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(4), pages 607-634, April.
    18. Perea, F. & Puerto, J. & Fernández, F.R., 2009. "Modeling cooperation on a class of distribution problems," European Journal of Operational Research, Elsevier, vol. 198(3), pages 726-733, November.
    19. Sascha Kurz, 2020. "Are weighted games sufficiently good for binary voting?," Papers 2006.05330, arXiv.org, revised Jul 2021.
    20. Monisankar Bishnu & Sonali Roy, 2012. "Hierarchy of players in swap robust voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 11-22, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:76:y:2015:i:c:p:87-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.