IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01243584.html
   My bibliography  Save this paper

Confidence Biases and Learning among Intuitive Bayesians

Author

Listed:
  • Louis Lévy-Garboua

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CIRANO - Centre interuniversitaire de recherche en analyse des organisations - UQAM - Université du Québec à Montréal = University of Québec in Montréal)

  • Muniza Askari

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Marco Gazel

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We design a double-or-quits game to compare the speed of learning one's specific ability with the speed of rising confidence as the task gets increasingly difficult. We find that people on average learn to be overconfident faster than they learn their true ability and we present a simple Bayesian model of confidence which integrates these facts. We show that limited discrimination of objective differences, myopia, and uncertainty about one's true ability to perform a task in isolation can be responsible for large and robust confidence biases, namely the hard-easy effect, the Dunning-Kruger effect, conservative learning from experience and the overprecision phenomenon (without underprecision) if subjects act as Bayesian learners. Moreover, these biases are likely to persist since the Bayesian aggregation of past information consolidates the accumulation of errors and the perception of contrarian illusory signals generates conservatism and under-reaction to events. Taken together, these two features may explain why intuitive Bayesians make systematically wrong predictions of their own performance.

Suggested Citation

  • Louis Lévy-Garboua & Muniza Askari & Marco Gazel, 2015. "Confidence Biases and Learning among Intuitive Bayesians," Post-Print halshs-01243584, HAL.
  • Handle: RePEc:hal:journl:halshs-01243584
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01243584
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01243584/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    2. Gervais, Simon & Odean, Terrance, 2001. "Learning to be Overconfident," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 1-27.
    3. Markus K. Brunnermeier & Jonathan A. Parker, 2005. "Optimal Expectations," American Economic Review, American Economic Association, vol. 95(4), pages 1092-1118, September.
    4. Ulrike Malmendier & Geoffrey Tate, 2005. "CEO Overconfidence and Corporate Investment," Journal of Finance, American Finance Association, vol. 60(6), pages 2661-2700, December.
    5. Jeremy Clark & Lana Friesen, 2009. "Overconfidence in Forecasts of Own Performance: An Experimental Study," Economic Journal, Royal Economic Society, vol. 119(534), pages 229-251, January.
    6. Jean-Pierre Benoît & Juan Dubra & Don A. Moore, 2015. "Does The Better-Than-Average Effect Show That People Are Overconfident?: Two Experiments," Journal of the European Economic Association, European Economic Association, vol. 13(2), pages 293-329, April.
    7. Dominic D. P. Johnson & James H. Fowler, 2011. "The evolution of overconfidence," Nature, Nature, vol. 477(7364), pages 317-320, September.
    8. Eric Van den Steen, 2011. "Overconfidence by Bayesian-Rational Agents," Management Science, INFORMS, vol. 57(5), pages 884-896, May.
    9. Deaves, Richard & Lüders, Erik & Schröder, Michael, 2010. "The dynamics of overconfidence: Evidence from stock market forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 75(3), pages 402-412, September.
    10. Guillaume Hollard & Sébastien Massoni & Jean-Christophe Vergnaud, 2016. "In search of good probability assessors: an experimental comparison of elicitation rules for confidence judgments," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01306258, HAL.
    11. Brad M. Barber & Terrance Odean, 2001. "Boys will be Boys: Gender, Overconfidence, and Common Stock Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 261-292.
    12. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    13. Merkle, Christoph & Weber, Martin, 2011. "True overconfidence: The inability of rational information processing to account for apparent overconfidence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 116(2), pages 262-271.
    14. Jean‐Pierre Benoît & Juan Dubra, 2011. "Apparent Overconfidence," Econometrica, Econometric Society, vol. 79(5), pages 1591-1625, September.
    15. Anderson, Cameron & Brion, Sebastien & Moore, Don A. & Kennedy, Jessica A., 2012. "A status-enhancement account of overconfidence," Institute for Research on Labor and Employment, Working Paper Series qt6s5812wf, Institute of Industrial Relations, UC Berkeley.
    16. Ryvkin, Dmitry & Krajč, Marian & Ortmann, Andreas, 2012. "Are the unskilled doomed to remain unaware?," Journal of Economic Psychology, Elsevier, vol. 33(5), pages 1012-1031.
    17. Guillaume Hollard & Sébastien Massoni & Jean-Christophe Vergnaud, 2016. "In search of good probability assessors: an experimental comparison of elicitation rules for confidence judgments," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01306258, HAL.
    18. Heath, Chip & Tversky, Amos, 1991. "Preference and Belief: Ambiguity and Competence in Choice under Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 4(1), pages 5-28, January.
    19. Dan Lovallo & Colin Camerer, 1999. "Overconfidence and Excess Entry: An Experimental Approach," American Economic Review, American Economic Association, vol. 89(1), pages 306-318, March.
    20. Grieco, Daniela & Hogarth, Robin M., 2009. "Overconfidence in absolute and relative performance: The regression hypothesis and Bayesian updating," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 756-771, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Dubra & Jean-Pierre Benoît & Giorgia Romagnoli, 2019. "Belief elicitation when more than money matters," Documentos de Trabajo/Working Papers 1901, Facultad de Ciencias Empresariales y Economia. Universidad de Montevideo..
    2. Jean-Pierre Benoît & Juan Dubra & Giorgia Romagnoli, 2022. "Belief Elicitation When More than Money Matters: Controlling for "Control"," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 837-888, August.
    3. Merkle, Christoph, 2017. "Financial overconfidence over time: Foresight, hindsight, and insight of investors," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 68-87.
    4. Friehe, Tim & Pannenberg, Markus, 2019. "Overconfidence over the lifespan: Evidence from Germany," Journal of Economic Psychology, Elsevier, vol. 74(C).
    5. Markus M. Möbius & Muriel Niederle & Paul Niehaus & Tanya S. Rosenblat, 2022. "Managing Self-Confidence: Theory and Experimental Evidence," Management Science, INFORMS, vol. 68(11), pages 7793-7817, November.
    6. Kai Barron & Christina Gravert, 2022. "Confidence and Career Choices: An Experiment," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(1), pages 35-68, January.
    7. Murad, Zahra & Starmer, Chris, 2021. "Confidence snowballing and relative performance feedback," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 550-572.
    8. Pannenberg, Markus & Friehe, Tim, 2019. "Does it really get better with age? Life-cycle patterns of confidence in Germany," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203497, Verein für Socialpolitik / German Economic Association.
    9. Peter Schwardmann & Joël van der Weele, 2016. "Deception and Self-Deception," Tinbergen Institute Discussion Papers 16-012/I, Tinbergen Institute.
    10. Zahra Murad & Martin Sefton & Chris Starmer, 2016. "How do risk attitudes affect measured confidence?," Journal of Risk and Uncertainty, Springer, vol. 52(1), pages 21-46, February.
    11. Cheung, Stephen L. & Johnstone, Lachlan, 2017. "True Overconfidence, Revealed through Actions: An Experiment," IZA Discussion Papers 10545, Institute of Labor Economics (IZA).
    12. Raphael Guber & Martin G. Kocher & Joachim Winter, 2021. "Does having insurance change individuals' self‐confidence?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 429-442, June.
    13. Hestermann, Nina & Le Yaouanq, Yves, 2018. "It\'s not my Fault! Self-Confidence and Experimentation," Rationality and Competition Discussion Paper Series 124, CRC TRR 190 Rationality and Competition.
    14. Jean‐Pierre Benoît & Juan Dubra, 2011. "Apparent Overconfidence," Econometrica, Econometric Society, vol. 79(5), pages 1591-1625, September.
    15. Bucciol, Alessandro & Quercia, Simone & Sconti, Alessia, 2021. "Promoting financial literacy among the elderly: Consequences on confidence," Journal of Economic Psychology, Elsevier, vol. 87(C).
    16. Bruhin, Adrian & Santos-Pinto, Luís & Staubli, David, 2018. "How do beliefs about skill affect risky decisions?," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 350-371.
    17. Jean-Pierre Benoît & Juan Dubra & Don A. Moore, 2015. "Does The Better-Than-Average Effect Show That People Are Overconfident?: Two Experiments," Journal of the European Economic Association, European Economic Association, vol. 13(2), pages 293-329, April.
    18. Lia Q. Flores & Miguel A. Fonseca, 2021. "Do in-group biases lead to overconfidence in performance? Experimental evidence," Discussion Papers 2103, University of Exeter, Department of Economics.
    19. Esra Alp Coşkun & Hakan Kahyaoglu & Chi Keung Marco Lau, 2023. "Which return regime induces overconfidence behavior? Artificial intelligence and a nonlinear approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    20. Helen X. H. Bao & Steven Haotong Li, 2016. "Overconfidence And Real Estate Research: A Survey Of The Literature," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.

    More about this item

    Keywords

    Confidence biases; Bayesian learning; double or quits experimental game; hard-easy effect; Dunning-Kruger effect; illusory signals;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01243584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.