IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01182926.html
   My bibliography  Save this paper

The similar faces of Swiss working Poor. An empirical analysis across Swiss regions using logistic regression and classification trees

Author

Listed:
  • Fabio Beniamino Losa

    (Office cantonal de la statistique du canton du Tessin, African Development Bank Group - African Development Bank Group)

  • Emiliano Soldini

    (Department of Business Management and Social Work - SUPSI - Scuola universitaria professionale della Svizzera italiana = University of Applied Sciences and Arts of Southern Switzerland [Manno])

Abstract

Are the determinants of working poverty the same across Swiss regions? Does the phenomenon primarily affect similar social groups from Zurich to Ticino and from the Lake Geneva Region to Eastern Switzerland? Or are there significant regional peculiarities in terms of risk factors and/or groups, calling for regional policies? The present paper – an empirical investigation into working poverty across the seven statistical regions in Switzerland – aims at providing answers to these questions by analysing the determinants of working poverty and by detecting the key characteristics of the population groups at major risk. Considering that at the bottom of the emergence of this social problem many see the rise of labour flexibility in the context of globalization and of the principle changes affecting labour markets, comparative empirical evidence is certainly a crucial element for policy design, especially in a federal system like Switzerland. Acknowledging that in order to assist policymakers in understanding and eventually defining suitable intervention measures it is of primary concern to be able to convey empirical evidence in a way which is both satisfying and easily understandable, two different multivariate statistical methods – logistic regression and classification trees – are applied in the analysis of the data. Due to their complementary characters, the combined use of these methods will prove very efficient in bringing research evidence closer to policy needs. The phenomenon of the working poor has come to attention in Switzerland since the economic slowdown of the 90s. The national report on poverty by LEU, BURRI and PRIESTER (1997) is considered, except for some initial contributions (most of them at cantonal level), the first milestonefor research on the topic. This report was followed by a series of studies which specifically tackle the issue of the working poor (e.g. DEUTSCH, FLÜCKIGER and SILBER, 1999; STREULI and BAUER, 2002). The present paper contributes, through its comparative and methodological approach, to this stream of research. The paper is organised into different sections. Following this introduction, section two tackles the question of defining working poverty, highlighting the complexity of this task and the resulting wide variety of definitions across countries and across different studies. It also describes the operational definition adopted by the Swiss Federal Statistical Office (FSO), which is the one usedin the empirical analysis. Section three presents the data, the models and the methodological approach. Section 4 is devoted to the results of the empirical applications. As a conclusion, the paper assesses the results in the light of implications for policy-making.

Suggested Citation

  • Fabio Beniamino Losa & Emiliano Soldini, 2011. "The similar faces of Swiss working Poor. An empirical analysis across Swiss regions using logistic regression and classification trees," Post-Print halshs-01182926, HAL.
  • Handle: RePEc:hal:journl:halshs-01182926
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    2. Jean-Marc Falter, 2006. "Equivalence Scales and Subjective Data in Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 142(II), pages 263-284, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    4. Eric Crettaz, 2011. "Why Are Immigrants and Ethnic Minorities more Affected by Working Poverty? Theoretical Framework and Empirical Evidence Across Welfare Regimes," LIS Working papers 564, LIS Cross-National Data Center in Luxembourg.
    5. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    6. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    7. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    8. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    9. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    10. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    11. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    12. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    13. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    14. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Edward Kozłowski & Anna Borucka & Andrzej Świderski & Przemysław Skoczyński, 2021. "Classification Trees in the Assessment of the Road–Railway Accidents Mortality," Energies, MDPI, vol. 14(12), pages 1-15, June.
    16. Javad Hassannataj Joloudari & Edris Hassannataj Joloudari & Hamid Saadatfar & Mohammad Ghasemigol & Seyyed Mohammad Razavi & Amir Mosavi & Narjes Nabipour & Shahaboddin Shamshirband & Laszlo Nadai, 2020. "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model," IJERPH, MDPI, vol. 17(3), pages 1-24, January.
    17. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    18. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Jonathan Zufferey, 2016. "Investigating the migrant mortality advantage at the intersections of social stratification in Switzerland," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(32), pages 899-926.
    20. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.

    More about this item

    Keywords

    working poor; classification trees; logistic regression;
    All these keywords.

    JEL classification:

    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • J3 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01182926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.