IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04874217.html
   My bibliography  Save this paper

Greening aviation with sustainable aviation fuels : Insights from decarbonization scenarios

Author

Listed:
  • Paul Bardon

    (IFPEN - IFP Energies nouvelles, IFP School)

  • Olivier Massol

    (LGI - Laboratoire Génie Industriel - CentraleSupélec - Université Paris-Saclay, Department of Economics [University of London] - UCL - University College of London [London])

  • Arthur Thomas

    (LEDa - Laboratoire d'Economie de Dauphine - IRD - Institut de Recherche pour le Développement - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

Recent studies outline markedly different possible decarbonization pathways for civil aviation by 2050. This paper examines how the key assumptions retained in these scenarios (i.e., the posited deployment of sustainable aviation fuels [SAFs], the projected demand trajectory, and the availability of electric and hydrogen-fueled solutions) affect the sector's future emissions of greenhouse gas. Data for 67 recent scenarios from industry-related, academic, institutional, and think tanks/NGO sources are used to perform the analysis. The results shed light on the shared properties of these scenarios. First, we find a clear consensus on the negative impact of SAFs on residual GHG emissions by 2050, conditioning to a high level of SAF penetration. Second, these scenarios posit a smaller decarbonizing power of biomass-based SAF than that of e-fuel. Third, we find signs of authorship bias in some scenarios. This last finding, therefore, raises concerns about the direct use of these scenarios in policymaking.

Suggested Citation

  • Paul Bardon & Olivier Massol & Arthur Thomas, 2025. "Greening aviation with sustainable aviation fuels : Insights from decarbonization scenarios," Post-Print hal-04874217, HAL.
  • Handle: RePEc:hal:journl:hal-04874217
    DOI: 10.1016/j.jenvman.2024.123943
    Note: View the original document on HAL open archive server: https://hal.science/hal-04874217v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04874217v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jenvman.2024.123943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steffen Kallbekken & David G. Victor, 2022. "A cleaner future for flight — aviation needs a radical redesign," Nature, Nature, vol. 609(7928), pages 673-675, September.
    2. Yuntao Zhou & Nan Zhang & Chao Li & Yong Liu & Ping Huang, 2018. "Decreased takeoff performance of aircraft due to climate change," Climatic Change, Springer, vol. 151(3), pages 463-472, December.
    3. Miyoshi, Chikage & Fukui, Hideki, 2018. "Measuring the rebound effects in air transport: The impact of jet fuel prices and air carriers’ fuel efficiency improvement of the European airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 71-84.
    4. Gössling, Stefan & Humpe, Andreas, 2023. "Net-zero aviation: Time for a new business model?," Journal of Air Transport Management, Elsevier, vol. 107(C).
    5. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    6. Mark D. Staples & Robert Malina & Steven R. H. Barrett, 2017. "The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels," Nature Energy, Nature, vol. 2(2), pages 1-8, February.
    7. Keshavarzzadeh, Amir H. & Thut, Caspar & Andersen, Daniel & Lingsch, Levi & Patt, Anthony G., 2022. "Novel quota and tax regime design approach for green transition: A case study on Switzerland's aviation industry," Energy Policy, Elsevier, vol. 171(C).
    8. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    9. Dodd, Tracey & Orlitzky, Marc & Nelson, Tim, 2018. "What stalls a renewable energy industry? Industry outlook of the aviation biofuels industry in Australia, Germany, and the USA," Energy Policy, Elsevier, vol. 123(C), pages 92-103.
    10. Evans, Antony & Schäfer, Andreas, 2013. "The rebound effect in the aviation sector," Energy Economics, Elsevier, vol. 36(C), pages 158-165.
    11. Suh, Daniel Y. & Ryerson, Megan S., 2019. "Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 400-416.
    12. Christoph Weber, Sina Heidari, and Michael Bucksteeg, 2021. "Coping with Uncertainties in the Electricity Sector - Methods for Decisions of Different Scope," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    13. Eduardo Cabrera & João M. Melo de Sousa, 2022. "Use of Sustainable Fuels in Aviation—A Review," Energies, MDPI, vol. 15(7), pages 1-23, March.
    14. O'Garra, Tanya & Fouquet, Roger, 2022. "Willingness to reduce travel consumption to support a low-carbon transition beyond COVID-19," Ecological Economics, Elsevier, vol. 193(C).
    15. Ng, Kok Siew & Farooq, Danial & Yang, Aidong, 2021. "Global biorenewable development strategies for sustainable aviation fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    17. Stefan Gössling & Chris Lyle, 2021. "Transition policies for climatically sustainable aviation," Transport Reviews, Taylor & Francis Journals, vol. 41(5), pages 643-658, September.
    18. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    19. Skov, Iva Ridjan & Schneider, Noémi, 2022. "Incentive structures for power-to-X and e-fuel pathways for transport in EU and member states," Energy Policy, Elsevier, vol. 168(C).
    20. Lynnette Dray & Andreas W. Schäfer & Carla Grobler & Christoph Falter & Florian Allroggen & Marc E. J. Stettler & Steven R. H. Barrett, 2022. "Cost and emissions pathways towards net-zero climate impacts in aviation," Nature Climate Change, Nature, vol. 12(10), pages 956-962, October.
    21. Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
    22. Paul Bardon & Olivier Massol, 2025. "Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050," Post-Print hal-04859382, HAL.
    23. Ryley, Tim & Baumeister, Stefan & Coulter, Liese, 2020. "Climate change influences on aviation: A literature review," Transport Policy, Elsevier, vol. 92(C), pages 55-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ruotian & Yang, Hangjun & Wang, Kun & Jiang, Changmin, 2024. "Impacts of a sustainable aviation fuel mandate on airline competition — Full-service carrier vs. low-cost carrier," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    2. Zheng, Shiyuan & Wang, Chunan & Jiang, Changmin, 2024. "Carrot or stick? Environmental and welfare implications of sustainable aviation fuel policies," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    3. Gössling, Stefan & Humpe, Andreas, 2023. "Net-zero aviation: Time for a new business model?," Journal of Air Transport Management, Elsevier, vol. 107(C).
    4. Nicoletta Brazzola & Amir Meskaldji & Anthony Patt & Tim Tröndle & Christian Moretti, 2025. "The role of direct air capture in achieving climate-neutral aviation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    6. Guan, Hong & Saadé, Raafat George & Liu, Hao, 2024. "Empirical analysis of Manager's perceptions towards aviation carbon emissions reduction," Journal of Air Transport Management, Elsevier, vol. 114(C).
    7. Nariê Rinke Dias de Souza & Alexandre Souza & Mateus Ferreira Chagas & Thayse Aparecida Dourado Hernandes & Otávio Cavalett, 2022. "Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 980-995, June.
    8. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    9. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    10. Wang, Jiqiang & Wang, Ya & Zhang, Shaohui & Fan, Chun & Zhou, Nanqing & Liu, Jinhui & Li, Xin & Liu, Yun & Hou, Xiujun & Yi, Bowen, 2024. "Accounting of aviation carbon emission in developing countries based on flight-level ADS-B data," Applied Energy, Elsevier, vol. 358(C).
    11. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2022. "STARTUPS: Founding airlines during COVID-19 - A hopeless endeavor or an ample opportunity for a better aviation system?," Transport Policy, Elsevier, vol. 118(C), pages 10-19.
    12. Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    14. Minami Kito & Hirotaka Takayabu & Keisuke Nansai, 2023. "Carbon‐neutral pathways to 2050 for Japan's aviation industry in the absence of a mass supply of sustainable aviation fuels," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1579-1592, December.
    15. Proost, Stef, 2024. "Looking for winning policies to address the climate issue in EU-aviation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    16. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    17. Cantos-Sanchez, Pedro & Moner-Colonques, Rafael & Ruiz-Buforn, Alba & Sempere-Monerris, Jose J., 2024. "Should short-haul flights be banned? A simple transportation network analysis," Economics of Transportation, Elsevier, vol. 39(C).
    18. Geissler, Caleb H. & Ryu, Joonjae & Maravelias, Christos T., 2024. "The future of biofuels in the United States transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Prussi, M. & Noussan, M. & Laveneziana, L. & Chiaramonti, D., 2025. "The risk of increasing energy demand while pursuing decarbonisation: the case of the e-fuels for the EU aviation sector," Transport Policy, Elsevier, vol. 160(C), pages 154-158.
    20. Holmes, Mark E. & Ryley, Tim & Ward, Aletha & Fein, Erich C. & Martin, Sophia, 2024. "Australasian aviation climate change hazards: A systematic review," Journal of Air Transport Management, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04874217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.