IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v114y2018icp342-354.html
   My bibliography  Save this article

Aviation CO2 emissions reductions from the use of alternative jet fuels

Author

Listed:
  • Staples, Mark D.
  • Malina, Robert
  • Suresh, Pooja
  • Hileman, James I.
  • Barrett, Steven R.H.

Abstract

Although a relatively small contributor to annual anthropogenic CO2 emissions (~2.6%), commercial aviation activity is growing at ~5% per annum. As a result, alternative jet fuel (AJF) technologies have garnered interest as a means to achieve large, near-term emissions reductions for the industry. This analysis quantifies the potential for AJF to reduce aviation's CO2 emissions by assessing: the availability of AJF feedstock; AJF volumes that could be produced from that feedstock; the lifecycle emissions of AJF compared to petroleum-derived jet fuel; and the number of bio-refineries and capital investment required to achieve the calculated emission reductions. We find that, if the use of AJF is to reduce aviation's lifecycle GHG emissions by 50% or more by 2050, prices or policies will have to significantly incentivize the production of bioenergy and waste feedstocks, and AJF production will need to be prioritized over other potential uses of these resources. Reductions of 15% by 2050 would require construction of ~60 new bio-refineries annually (similar to growth in global biofuel production capacity in the early 2000s), and capital investment of ~12 billion USD2015 per year (~1/5 of annual capital investment in petroleum refining).

Suggested Citation

  • Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:342-354
    DOI: 10.1016/j.enpol.2017.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517308224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cansino, José M. & Román, Rocío, 2017. "Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain," Energy Policy, Elsevier, vol. 101(C), pages 109-122.
    2. G. Hurtt & L. Chini & S. Frolking & R. Betts & J. Feddema & G. Fischer & J. Fisk & K. Hibbard & R. Houghton & A. Janetos & C. Jones & G. Kindermann & T. Kinoshita & Kees Klein Goldewijk & K. Riahi & E, 2011. "Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands," Climatic Change, Springer, vol. 109(1), pages 117-161, November.
    3. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    4. Pratt, Michelle R. & Tyner, Wallace E. & Muth, David J. & Kladivko, Eileen J., 2014. "Synergies between cover crops and corn stover removal," Agricultural Systems, Elsevier, vol. 130(C), pages 67-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    2. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2019. "AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 212-227, April.
    3. Karsten Kieckhäfer & Gunnar Quante & Christoph Müller & Thomas Stefan Spengler & Matthias Lossau & Wolfgang Jonas, 2018. "Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO 2 Emissions from Aviation," Energies, MDPI, vol. 11(1), pages 1-17, January.
    4. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    5. Zuo, Alec & Hou, Lingling & Huang, Zeying, 2020. "How does farmers' current usage of crop straws influence the willingness-to-accept price to sell?," Energy Economics, Elsevier, vol. 86(C).
    6. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    7. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    8. Piotr Niedzielski & Magdalena Zioło & Jarosław Kozuba & Ewa Kuzionko-Ochrymiuk & Natalia Drop, 2021. "Analysis of the Relationship of the Degree of Aviation Sector Development with Greenhouse Gas Emissions and Measures of Economic Development in the European Union Countries," Energies, MDPI, vol. 14(13), pages 1-16, June.
    9. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    10. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    11. Winchester, Niven & Malina, Robert & Staples, Mark D. & Barrett, Steven R.H., 2015. "The impact of advanced biofuels on aviation emissions and operations in the U.S," Energy Economics, Elsevier, vol. 49(C), pages 482-491.
    12. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    13. Sheu, Jiuh-Biing, 2014. "Airline ambidextrous competition under an emissions trading scheme – A reference-dependent behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 115-145.
    14. Mengqi Wei & Chong Du & Xuege Wang, 2023. "Analysis and Forecast of Land Use and Carbon Sink Changes in Jilin Province, China," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    15. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.
    16. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    17. Rashid Khan, Haroon Ur & Siddique, Muhammad & Zaman, Khalid & Yousaf, Sheikh Usman & Shoukry, Alaa Mohamd & Gani, Showkat & Sasmoko, & Khan, Aqeel & Hishan, Sanil S. & Saleem, Hummera, 2018. "The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low-, middle-, and high -income coun," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 18-35.
    18. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    19. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    20. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:342-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.