IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v21y2014i2p91-104.html
   My bibliography  Save this article

Heterogeneous Computation Of Rainbow Option Prices Using Fourier Cosine Series Expansion Under A Mixed Cpu–Gpu Computation Framework

Author

Listed:
  • A. Cassagnes
  • Y. Chen
  • H. Ohashi

Abstract

This paper focuses on comparing different heterogeneous computational designs for the calculation of rainbow options prices using the Fourier‐cosine series expansion (COS) method. We also propose a simple enough way to automatically decide the ratio of load balancing at runtime. A general‐purpose computing on graphic processing unit implementation of the two‐dimensional composite Simpson rule free of conditional statements with some degree of loop unrolling is also introduced. We will also show how to reduce the integration domain of coefficients appearing in the option pricing and by doing so achieve a substantial speed‐up and improve accuracy when compared with a straightforward implementation. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • A. Cassagnes & Y. Chen & H. Ohashi, 2014. "Heterogeneous Computation Of Rainbow Option Prices Using Fourier Cosine Series Expansion Under A Mixed Cpu–Gpu Computation Framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(2), pages 91-104, April.
  • Handle: RePEc:wly:isacfm:v:21:y:2014:i:2:p:91-104
    DOI: 10.1002/isaf.1349
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1349
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Protter, Philip, 2001. "A partial introduction to financial asset pricing theory," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 169-203, February.
    4. Daniel Dufresne & Jose Garrido & Manuel Morales, 2009. "Fourier Inversion Formulas in Option Pricing and Insurance," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 359-383, September.
    5. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Simonato, Jean-Guy, 2011. "Computing American option prices in the lognormal jump–diffusion framework with a Markov chain," Finance Research Letters, Elsevier, vol. 8(4), pages 220-226.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    9. Mark Broadie & Yusaku Yamamoto, 2003. "Application of the Fast Gauss Transform to Option Pricing," Management Science, INFORMS, vol. 49(8), pages 1071-1088, August.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    5. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    8. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    9. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    12. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    13. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    14. Lin Zhao & Sweder van Wijnbergen, 2013. "A Real Option Perspective on Valuing Gas Fields," Tinbergen Institute Discussion Papers 13-126/VI/DSF60, Tinbergen Institute.
    15. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    16. Liu, Qiang & Guo, Shuxin, 2020. "An excellent approximation for the m out of n day provision," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    17. Junkee Jeon & Geonwoo Kim, 2022. "Analytic Valuation Formula for American Strangle Option in the Mean-Reversion Environment," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    18. Penizzotto, F. & Pringles, R. & Olsina, F., 2019. "Real options valuation of photovoltaic power investments in existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    20. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:21:y:2014:i:2:p:91-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.