IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03885137.html
   My bibliography  Save this paper

Algorithmic market making in dealer markets with hedging and market impact

Author

Listed:
  • Alexander Barzykin
  • Philippe Bergault

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Olivier Guéant

Abstract

In dealer markets, dealers provide prices at which they agree to buy and sell the assets and securities they have in their scope. With ever increasing trading volume, this quoting task has to be done algorithmically in most markets such as foreign exchange markets or corporate bond markets. Over the last ten years, many mathematical models have been designed that can be the basis of quoting algorithms in dealer markets. Nevertheless, in most (if not all) models, the dealer is a pure internalizer, setting quotes and waiting for clients. However, on many dealer markets, dealers also have access to an inter-dealer market or even public trading venues where they can hedge part of their inventory. In this paper, we propose a model taking this possibility into account, therefore allowing dealers to externalize part of their risk. The model displays an important feature well known to practitioners that within a certain inventory range the dealer internalizes the flow by appropriately adjusting the quotes and starts externalizing outside of that range. The larger the franchise, the wider is the inventory range suitable for pure internalization. The model is illustrated numerically with realistic parameters for USDCNH spot market.

Suggested Citation

  • Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2022. "Algorithmic market making in dealer markets with hedging and market impact," Post-Print hal-03885137, HAL.
  • Handle: RePEc:hal:journl:hal-03885137
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fr'ed'eric Abergel & C^ome Hur'e & Huy^en Pham, 2017. "Algorithmic trading in a microstructural limit order book model," Papers 1705.01446, arXiv.org, revised Feb 2020.
    2. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    3. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    4. repec:bla:jfinan:v:43:y:1988:i:3:p:617-37 is not listed on IDEAS
    5. Andreas Schrimpf & Vladyslav Sushko, 2019. "FX trade execution: complex and highly fragmented," BIS Quarterly Review, Bank for International Settlements, December.
    6. Amihud, Yakov & Mendelson, Haim, 1980. "Dealership market : Market-making with inventory," Journal of Financial Economics, Elsevier, vol. 8(1), pages 31-53, March.
    7. Andreas Schrimpf & Vladyslav Sushko, 2019. "Sizing up global foreign exchange markets," BIS Quarterly Review, Bank for International Settlements, December.
    8. O'Hara, Maureen & Oldfield, George S., 1986. "The Microeconomics of Market Making," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(4), pages 361-376, December.
    9. Olivier Guéant & Iuliia Manziuk, 2019. "Deep Reinforcement Learning for Market Making in Corporate Bonds: Beating the Curse of Dimensionality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(5), pages 387-452, September.
    10. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    11. Grossman, S.J. & Miller, M.H., 1988. "Liquidity And Market Structure," Papers 88, Princeton, Department of Economics - Financial Research Center.
    12. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    13. Olivier Guéant & Iuliia Manziuk, 2020. "Optimal control on graphs: existence, uniqueness, and long-term behavior," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03252606, HAL.
    14. Pietro Fodra & Huy^en Pham, 2013. "High frequency trading and asymptotics for small risk aversion in a Markov renewal model," Papers 1310.1756, arXiv.org, revised Jan 2015.
    15. Frédéric Abergel & Côme Huré & Huyên Pham, 2020. "Algorithmic trading in a microstructural limit order book model," Post-Print hal-01514987, HAL.
    16. Butz, M. & Oomen, R., 2019. "Internalisation by electronic FX spot dealers," LSE Research Online Documents on Economics 90485, London School of Economics and Political Science, LSE Library.
    17. Olivier Gu'eant & Iuliia Manziuk, 2019. "Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality," Papers 1910.13205, arXiv.org.
    18. M. Butz & R. Oomen, 2019. "Internalisation by electronic FX spot dealers," Quantitative Finance, Taylor & Francis Journals, vol. 19(1), pages 35-56, January.
    19. Alexey Bakshaev, 2020. "Market-making with reinforcement-learning (SAC)," Papers 2008.12275, arXiv.org.
    20. Fabien Guilbaud & Huyên Pham, 2015. "Optimal High-Frequency Trading In A Pro Rata Microstructure With Predictive Information," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 545-575, July.
    21. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    22. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    23. Frédéric Abergel & Côme Huré & Huyên Pham, 2020. "Algorithmic trading in a microstructural limit order book model," Quantitative Finance, Taylor & Francis Journals, vol. 20(8), pages 1263-1283, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Ragel & Damien Challet, 2024. "Data time travel and consistent market making: taming reinforcement learning in multi-agent systems with anonymous data," Papers 2408.02322, arXiv.org.
    2. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    3. Kubo, Kenji & Nakagawa, Kei & Mizukami, Daiki & Acharya, Dipesh, 2023. "Optimal liquidation strategy for cryptocurrency marketplaces using stochastic control," Finance Research Letters, Elsevier, vol. 53(C).
    4. Sergio Pulido & Mathieu Rosenbaum & Emmanouil Sfendourakis, 2023. "Understanding the worst-kept secret of high-frequency trading," Papers 2307.15599, arXiv.org, revised Jul 2024.
    5. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    6. Alexander Barzykin & Robert Boyce & Eyal Neuman, 2024. "Unwinding Toxic Flow with Partial Information," Papers 2407.04510, arXiv.org.
    7. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    8. Philippe Bergault & Leandro S'anchez-Betancourt, 2024. "A Mean Field Game between Informed Traders and a Broker," Papers 2401.05257, arXiv.org.
    9. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    2. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    3. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Market making by an FX dealer: tiers, pricing ladders and hedging rates for optimal risk control," Papers 2112.02269, arXiv.org, revised Jun 2023.
    4. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.
    5. Philippe Bergault & Olivier Guéant, 2021. "Size matters for OTC market makers: General results and dimensionality reduction techniques," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 279-322, January.
    6. Jialiang Luo & Harry Zheng, 2021. "Dynamic Equilibrium of Market Making with Price Competition," Dynamic Games and Applications, Springer, vol. 11(3), pages 556-579, September.
    7. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    8. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    9. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    10. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    11. Thomas Spooner & Rahul Savani, 2020. "Robust Market Making via Adversarial Reinforcement Learning," Papers 2003.01820, arXiv.org, revised Jul 2020.
    12. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    13. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    14. Jonathan Ch'avez-Casillas & Jos'e E. Figueroa-L'opez & Chuyi Yu & Yi Zhang, 2024. "Adaptive Optimal Market Making Strategies with Inventory Liquidation Cos," Papers 2405.11444, arXiv.org.
    15. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2022. "Dealing with multi-currency inventory risk in FX cash markets," Papers 2207.04100, arXiv.org, revised Oct 2023.
    16. Bastien Baldacci & Philippe Bergault & Dylan Possamai, 2022. "A mean-field game of market-making against strategic traders," Papers 2203.13053, arXiv.org.
    17. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    18. Bastien Baldacci & Joffrey Derchu & Iuliia Manziuk, 2020. "An approximate solution for options market-making in high dimension," Papers 2009.00907, arXiv.org.
    19. Goldstein, Michael A. & Namin, Elmira Shekari, 2023. "Corporate bond liquidity and yield spreads: A review," Research in International Business and Finance, Elsevier, vol. 65(C).
    20. Bastien Baldacci & Jerome Benveniste & Gordon Ritter, 2020. "Optimal trading without optimal control," Papers 2012.12945, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03885137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.