IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.12275.html
   My bibliography  Save this paper

Market-making with reinforcement-learning (SAC)

Author

Listed:
  • Alexey Bakshaev

Abstract

The paper explores the application of a continuous action space soft actor-critic (SAC) reinforcement learning model to the area of automated market-making. The reinforcement learning agent receives a simulated flow of client trades, thus accruing a position in an asset, and learns to offset this risk by either hedging at simulated "exchange" spreads or by attracting an offsetting client flow by changing offered client spreads (skewing the offered prices). The question of learning minimum spreads that compensate for the risk of taking the position is being investigated. Finally, the agent is posed with a problem of learning to hedge a blended client trade flow resulting from independent price processes (a "portfolio" position). The position penalty method is introduced to improve the convergence. An Open-AI gym-compatible hedge environment is introduced and the Open AI SAC baseline RL engine is being used as a learning baseline.

Suggested Citation

  • Alexey Bakshaev, 2020. "Market-making with reinforcement-learning (SAC)," Papers 2008.12275, arXiv.org.
  • Handle: RePEc:arx:papers:2008.12275
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.12275
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Algorithmic market making in dealer markets with hedging and market impact," Papers 2106.06974, arXiv.org, revised Dec 2022.
    2. Alexander Barzykin & Philippe Bergault & Olivier Gu'eant, 2021. "Market making by an FX dealer: tiers, pricing ladders and hedging rates for optimal risk control," Papers 2112.02269, arXiv.org, revised Jun 2023.
    3. Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2023. "Algorithmic market making in dealer markets with hedging and market impact," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 41-79, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.12275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.