IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.02322.html
   My bibliography  Save this paper

Data time travel and consistent market making: taming reinforcement learning in multi-agent systems with anonymous data

Author

Listed:
  • Vincent Ragel
  • Damien Challet

Abstract

Reinforcement learning works best when the impact of the agent's actions on its environment can be perfectly simulated or fully appraised from available data. Some systems are however both hard to simulate and very sensitive to small perturbations. An additional difficulty arises when an RL agent must learn to be part of a multi-agent system using only anonymous data, which makes it impossible to infer the state of each agent, thus to use data directly. Typical examples are competitive systems without agent-resolved data such as financial markets. We introduce consistent data time travel for offline RL as a remedy for these problems: instead of using historical data in a sequential way, we argue that one needs to perform time travel in historical data, i.e., to adjust the time index so that both the past state and the influence of the RL agent's action on the state coincide with real data. This both alleviates the need to resort to imperfect models and consistently accounts for both the immediate and long-term reactions of the system when using anonymous historical data. We apply this idea to market making in limit order books, a notoriously difficult task for RL; it turns out that the gain of the agent is significantly higher with data time travel than with naive sequential data, which suggests that the difficulty of this task for RL may have been overestimated.

Suggested Citation

  • Vincent Ragel & Damien Challet, 2024. "Data time travel and consistent market making: taming reinforcement learning in multi-agent systems with anonymous data," Papers 2408.02322, arXiv.org.
  • Handle: RePEc:arx:papers:2408.02322
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.02322
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant, 2017. "Optimal market making," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(2), pages 112-154, March.
    2. Zoltán Eisler & Jean-Philippe Bouchaud & Julien Kockelkoren, 2012. "The price impact of order book events: market orders, limit orders and cancellations," Quantitative Finance, Taylor & Francis Journals, vol. 12(9), pages 1395-1419, September.
    3. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    4. Alexander Barzykin & Philippe Bergault & Olivier Guéant, 2023. "Algorithmic market making in dealer markets with hedging and market impact," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 41-79, January.
    5. Philippe Bergault & David Evangelista & Olivier Guéant & Douglas Vieira, 2021. "Closed-form Approximations in Multi-asset Market Making," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(2), pages 101-142, March.
    6. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2013. "Minority Games: Interacting agents in financial markets," OUP Catalogue, Oxford University Press, number 9780199686698.
    7. Philippe Bergault & David Evangelista & Olivier Guéant & Douglas Vieira, 2021. "Closed-form Approximations in Multi-asset Market Making," Post-Print hal-03885121, HAL.
    8. Olivier Gu'eant, 2016. "Optimal market making," Papers 1605.01862, arXiv.org, revised May 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bergault & Olivier Gu'eant, 2023. "Liquidity Dynamics in RFQ Markets and Impact on Pricing," Papers 2309.04216, arXiv.org, revised Jun 2024.
    2. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Automated Market Making: the case of Pegged Assets," Papers 2411.08145, arXiv.org.
    3. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant & Julien Guilbert, 2024. "Price-Aware Automated Market Makers: Models Beyond Brownian Prices and Static Liquidity," Papers 2405.03496, arXiv.org, revised May 2024.
    4. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    5. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    6. Philippe Bergault & Louis Bertucci & David Bouba & Olivier Gu'eant, 2022. "Automated Market Makers: Mean-Variance Analysis of LPs Payoffs and Design of Pricing Functions," Papers 2212.00336, arXiv.org, revised Nov 2023.
    7. Mathieu Rosenbaum & Jianfei Zhang, 2022. "Multi-asset market making under the quadratic rough Heston," Papers 2212.10164, arXiv.org.
    8. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    9. Damian Eduardo Taranto & Giacomo Bormetti & Fabrizio Lillo, 2014. "The adaptive nature of liquidity taking in limit order books," Papers 1403.0842, arXiv.org, revised Apr 2014.
    10. Robert Boyce & Martin Herdegen & Leandro S'anchez-Betancourt, 2024. "Market Making with Exogenous Competition," Papers 2407.17393, arXiv.org.
    11. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    12. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Working Papers hal-02567489, HAL.
    13. Lester Ingber, 2020. "Developing Bid-Ask Probabilities for High-Frequency Trading," Virtual Economics, The London Academy of Science and Business, vol. 3(2), pages 7-24, April.
    14. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    15. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    16. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Papers 2004.01624, arXiv.org, revised Mar 2022.
    17. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2019. "Optimal inventory management and order book modeling," Post-Print hal-01710301, HAL.
    18. Zhou Fang & Haiqing Xu, 2023. "Over-the-Counter Market Making via Reinforcement Learning," Papers 2307.01816, arXiv.org.
    19. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model," Papers 1604.07556, arXiv.org.
    20. Zhou Fang & Haiqing Xu, 2023. "Market Making of Options via Reinforcement Learning," Papers 2307.01814, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.02322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.