Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.110215
Note: View the original document on HAL open archive server: https://hal.umontpellier.fr/hal-02921304
Download full text from publisher
Other versions of this item:
- Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
References listed on IDEAS
- Nhi N.Y.Vo & Xue-Zhong He & Shaowu Liu & Guandong Xu, 2019. "Deep Learning for Decision Making and the Optimization of Socially Responsible Investments and Portfolio," Published Paper Series 2019-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
- Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Angus Deaton, 1999.
"Commodity Prices and Growth in Africa,"
Journal of Economic Perspectives, American Economic Association, vol. 13(3), pages 23-40, Summer.
- Deaton, A., 1999. "Commodity Prices and Growth in Aftica," Papers 186, Princeton, Woodrow Wilson School - Development Studies.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Capitani, Daniel Henrique Dario & Gaio, Luiz Eduardo, 2023. "Volatility Transmissionin Agricultural Markets: Evidence from the Russia-Ukraine Conflict," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 11(2), April.
- Hong Shen & Qi Pan & Lili Zhao & Pin Ng, 2022. "Risk Contagion between Global Commodities from the Perspective of Volatility Spillover," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Pavel Kotyza & Katarzyna Czech & Michał Wielechowski & Luboš Smutka & Petr Procházka, 2021. "Sugar Prices vs. Financial Market Uncertainty in the Time of Crisis: Does COVID-19 Induce Structural Changes in the Relationship?," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
- Ran Lu & Hongjun Zeng, 2022. "VIX and major agricultural future markets: dynamic linkage and time-frequency relations around the COVID-19 outbreak," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 40(2), pages 334-353, September.
- Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
- Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series,"
Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Post-Print hal-04312314, HAL.
- Francesco Piccialli & Vincenzo Schiano Cola & Fabio Giampaolo & Salvatore Cuomo, 2021. "The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic," Information Systems Frontiers, Springer, vol. 23(6), pages 1467-1497, December.
- Dorota Zebrowska-Suchodolska & Andrzej Karpio & Krzysztof Kompa, 2021. "COVID-19 Pandemic: Stock Markets Situation in European Ex-Communist Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 1106-1128.
- Saâdaoui, Foued, 2023. "Skewed multifractal scaling of stock markets during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- María del Carmen Valls Martínez & Pedro Antonio Martín Cervantes, 2021. "Testing the Resilience of CSR Stocks during the COVID-19 Crisis: A Transcontinental Analysis," Mathematics, MDPI, vol. 9(5), pages 1-24, March.
- Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
- Juan Antonio Galán-Gutiérrez & Rodrigo Martín-García, 2022. "Fundamentals vs. Financialization during Extreme Events: From Backwardation to Contango, a Copper Market Analysis during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
- Borgards, Oliver & Czudaj, Robert L. & Hoang, Thi Hong Van, 2021. "Price overreactions in the commodity futures market: An intraday analysis of the Covid-19 pandemic impact," Resources Policy, Elsevier, vol. 71(C).
- Iuga, Iulia Cristina & Mudakkar, Syeda Rabab & Dragolea, Larisa Loredana, 2024. "Agricultural commodities market reaction to COVID-19," Research in International Business and Finance, Elsevier, vol. 69(C).
- Daniel Stefan Armeanu & Stefan Cristian Gherghina & Jean Vasile Andrei & Camelia Catalina Joldes, 2023. "Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets," Energy & Environment, , vol. 34(5), pages 1433-1470, August.
- Hachmi Ben Ameur & Sahbi Boubaker & Zied Ftiti & Wael Louhichi & Kais Tissaoui, 2024. "Forecasting commodity prices: empirical evidence using deep learning tools," Annals of Operations Research, Springer, vol. 339(1), pages 349-367, August.
- Jin, Lifu & Zheng, Bo & Ma, Jiahao & Zhang, Jiu & Xiong, Long & Jiang, Xiongfei & Li, Jiangcheng, 2022. "Empirical study and model simulation of global stock market dynamics during COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Maghyereh, Aktham & Abdoh, Hussein & Awartani, Basel, 2022. "Have returns and volatilities for financial assets responded to implied volatility during the COVID-19 pandemic?," Journal of Commodity Markets, Elsevier, vol. 26(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chu, Amanda M.Y. & Lv, Zhihui & Wagner, Niklas F. & Wong, Wing-Keung, 2020.
"Linear and nonlinear growth determinants: The case of Mongolia and its connection to China,"
Emerging Markets Review, Elsevier, vol. 43(C).
- Chu, Amanda M.Y. & Lv, Zhihui & Wagner, Niklas F. & Wong, Wing-Keung, 2020. "Linear and Nonlinear Growth Determinants: The Case of Mongolia and its Connection to China," MPRA Paper 99185, University Library of Munich, Germany.
- Pegah Eslamieh & Mehdi Shajari & Ahmad Nickabadi, 2023. "User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-26, July.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Karabulut, Gokhan & Bilgin, Mehmet Huseyin & Doker, Asli Cansin, 2020. "The relationship between commodity prices and world trade uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 276-281.
- Ekaterina Zolotareva, 2021. "Aiding Long-Term Investment Decisions with XGBoost Machine Learning Model," Papers 2104.09341, arXiv.org.
- Ehsan Hoseinzade & Saman Haratizadeh, 2018. "CNNPred: CNN-based stock market prediction using several data sources," Papers 1810.08923, arXiv.org.
- Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
- Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W. & Mahapatra, Biplab, 2024. "Impact of media hype and fake news on commodity futures prices: A deep learning approach over the COVID-19 period," Finance Research Letters, Elsevier, vol. 59(C).
- Saeed Nosratabadi & Amirhosein Mosavi & Puhong Duan & Pedram Ghamisi & Ferdinand Filip & Shahab S. Band & Uwe Reuter & Joao Gama & Amir H. Gandomi, 2020. "Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," MetaArXiv haf2v, Center for Open Science.
- Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
- Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
- Bivas Dinda, 2024. "Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy," Papers 2406.02604, arXiv.org.
- Montserrat Reyna Miranda & Ricardo Massa Roldán & Vicente Gómez Salcido, 2022. "Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(1), pages 1-23, Enero - M.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," OSF Preprints yc6e2, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," EdArXiv 5dwrt, Center for Open Science.
- Li Long, Chan & Guleria, Yash & Alam, Sameer, 2021. "Air passenger forecasting using Neural Granger causal Google trend queries," Journal of Air Transport Management, Elsevier, vol. 95(C).
More about this item
Keywords
Forecasting; Covid-19 spread; Deep learning; LSTM; ARIMA-Wavelet; Commodity; market volatility; Pandemics risks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02921304. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.