Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Chang, P H Kevin & Osler, Carol L, 1999. "Methodical Madness: Technical Analysis and the Irrationality of Exchange-Rate Forecasts," Economic Journal, Royal Economic Society, vol. 109(458), pages 636-661, October.
- Dixon, Matthew & Klabjan, Diego & Bang, Jin Hoon, 2017. "Classification-based financial markets prediction using deep neural networks," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 67-77.
- Charfeddine, Lanouar & Khediri, Karim Ben & Aye, Goodness C. & Gupta, Rangan, 2018.
"Time-varying efficiency of developed and emerging bond markets: Evidence from long-spans of historical data,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 632-647.
- Lanouar Charfeddine & Karim Ben Khediri & Goodness C. Aye & Rangan Gupta, 2017. "Time-Varying Efficiency of Developed and Emerging Bond Markets: Evidence from Long-Spans of Historical Data," Working Papers 201771, University of Pretoria, Department of Economics.
- Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability of Technical Analysis: A Review," AgMAS Project Research Reports 37487, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
- Tanaka-Yamawaki, Mieko & Tokuoka, Seiji, 2007. "Adaptive use of technical indicators for the prediction of intra-day stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 125-133.
- Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000.
"Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,"
Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
- Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
- Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
- Ito, Mikio & Sugiyama, Shunsuke, 2009. "Measuring the degree of time varying market inefficiency," Economics Letters, Elsevier, vol. 103(1), pages 62-64, April.
- Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
- Drakos, Konstantinos, 2004. "Terrorism-induced structural shifts in financial risk: airline stocks in the aftermath of the September 11th terror attacks," European Journal of Political Economy, Elsevier, vol. 20(2), pages 435-446, June.
- Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
- Andrew Skabar, 2013. "Direction‐of‐Change Financial Time Series Forecasting using a Similarity‐Based Classification Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 409-422, August.
- Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Ferreira, Paulo & Dionísio, Andreia, 2016. "How long is the memory of the US stock market?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 502-506.
- James B. Heaton & Nicholas Polson & Jan H. Witte, 2017. "Rejoinder to ‘Deep learning for finance: deep portfolios’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 19-21, January.
- Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
- Urquhart, Andrew & McGroarty, Frank, 2014. "Calendar effects, market conditions and the Adaptive Market Hypothesis: Evidence from long-run U.S. data," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 154-166.
- J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
- Perryman, Alexa A. & Butler, Frank C. & Martin, John A. & Ferris, Gerald R., 2010. "When the CEO is ill: Keeping quiet or going public?," Business Horizons, Elsevier, vol. 53(1), pages 21-29, January.
- Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ekaterina Zolotareva, 2021. "Applying Convolutional Neural Networks for Stock Market Trends Identification," Papers 2104.13948, arXiv.org.
- Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020.
"Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities,"
Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Jules Sadefo-Kamdem & Rose Bandolo Essomba & James Njong Berinyuy, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Post-Print hal-02921304, HAL.
- Yang, Guo-Hui & Zhong, Guang-Yan & Wang, Li-Ya & Xie, Zu-Guang & Li, Jiang-Cheng, 2024. "A hybrid forecasting framework based on MCS and machine learning for higher dimensional and unbalanced systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W. & Mahapatra, Biplab, 2024. "Impact of media hype and fake news on commodity futures prices: A deep learning approach over the COVID-19 period," Finance Research Letters, Elsevier, vol. 59(C).
- Balcilar, Mehmet & Sertoglu, Kamil & Agan, Busra, 2022. "The COVID-19 effects on agricultural commodity markets," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 61(3), July.
- Ekaterina Zolotareva, 2021. "Aiding Long-Term Investment Decisions with XGBoost Machine Learning Model," Papers 2104.09341, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020.
"Forex exchange rate forecasting using deep recurrent neural networks,"
Digital Finance, Springer, vol. 2(1), pages 69-96, September.
- Dautel, Alexander J. & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2019. "Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks," IRTG 1792 Discussion Papers 2019-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dautel, Alexander Jakob & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," IRTG 1792 Discussion Papers 2020-006, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Al-Khazali, Osamah & Mirzaei, Ali, 2017. "Stock market anomalies, market efficiency and the adaptive market hypothesis: Evidence from Islamic stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 190-208.
- Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Lukas Menkhoff & Mark P. Taylor, 2007.
"The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis,"
Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals : Technical Analysis," The Warwick Economics Research Paper Series (TWERPS) 769, University of Warwick, Department of Economics.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Hannover Economic Papers (HEP) dp-352, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Economic Research Papers 269739, University of Warwick - Department of Economics.
- Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Xiong, Xiong & Meng, Yongqiang & Li, Xiao & Shen, Dehua, 2019. "An empirical analysis of the Adaptive Market Hypothesis with calendar effects:Evidence from China," Finance Research Letters, Elsevier, vol. 31(C).
- Ma, T. & Fraser-Mackenzie, P.A.F. & Sung, M. & Kansara, A.P. & Johnson, J.E.V., 2022. "Are the least successful traders those most likely to exit the market? A survival analysis contribution to the efficient market debate," European Journal of Operational Research, Elsevier, vol. 299(1), pages 330-345.
- Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
- Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
- Dzung Phan Tran Trung & Hung Pham Quang, 2019. "Adaptive Market Hypothesis: Evidence from the Vietnamese Stock Market," JRFM, MDPI, vol. 12(2), pages 1-16, May.
- Jinho Lee & Sungwoo Park & Jungyu Ahn & Jonghun Kwak, 2022. "ETF Portfolio Construction via Neural Network trained on Financial Statement Data," Papers 2207.01187, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-03-23 (Big Data)
- NEP-CMP-2020-03-23 (Computational Economics)
- NEP-FMK-2020-03-23 (Financial Markets)
- NEP-MST-2020-03-23 (Market Microstructure)
- NEP-RMG-2020-03-23 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.10385. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.