Aiding Long-Term Investment Decisions with XGBoost Machine Learning Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jiang, Minqi & Liu, Jiapeng & Zhang, Lu & Liu, Chunyu, 2020. "An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goutte, Stéphane & Le, Hoang-Viet & Liu, Fei & von Mettenheim, Hans-Jörg, 2023.
"Deep learning and technical analysis in cryptocurrency market,"
Finance Research Letters, Elsevier, vol. 54(C).
- Stéphane Goutte & Viet Hoang Le & Fei Liu & Hans-Jörg Mettenheim, Von, 2023. "Deep Learning And Technical Analysis In Cryptocurrency Market," Working Papers halshs-03917333, HAL.
- Jakub Drahokoupil, 2022. "Application of the XGBoost algorithm and Bayesian optimization for the Bitcoin price prediction during the COVID-19 period," FFA Working Papers 4.006, Prague University of Economics and Business, revised 09 May 2022.
- Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ekaterina Zolotareva, 2021. "Applying Convolutional Neural Networks for Stock Market Trends Identification," Papers 2104.13948, arXiv.org.
- Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020.
"Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities,"
Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Jules Sadefo-Kamdem & Rose Bandolo Essomba & James Njong Berinyuy, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Post-Print hal-02921304, HAL.
- Yang, Guo-Hui & Zhong, Guang-Yan & Wang, Li-Ya & Xie, Zu-Guang & Li, Jiang-Cheng, 2024. "A hybrid forecasting framework based on MCS and machine learning for higher dimensional and unbalanced systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Mojtaba Nabipour & Pooyan Nayyeri & Hamed Jabani & Amir Mosavi, 2020. "Deep learning for Stock Market Prediction," Papers 2004.01497, arXiv.org.
- Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
- Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W. & Mahapatra, Biplab, 2024. "Impact of media hype and fake news on commodity futures prices: A deep learning approach over the COVID-19 period," Finance Research Letters, Elsevier, vol. 59(C).
- Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
- Zhenhua Li & Xingxin Chen & Lin Wu & Abu-Siada Ahmed & Tao Wang & Yujie Zhang & Hongbin Li & Zhenxing Li & Yanchun Xu & Yue Tong, 2021. "Error Analysis of Air-Core Coil Current Transformer Based on Stacking Model Fusion," Energies, MDPI, vol. 14(7), pages 1-14, March.
- Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
- Ma, Rui & Mao, Di & Cao, Dongmei & Luo, Shuai & Gupta, Suraksha & Wang, Yichuan, 2024. "From vineyard to table: Uncovering wine quality for sales management through machine learning," Journal of Business Research, Elsevier, vol. 176(C).
- Jianlong Zhu & Dan Xian & Fengxiao & Yichen Nie, 2022. "Embedding-based neural network for investment return prediction," Papers 2210.00876, arXiv.org.
- Yan Guo & Dezhao Tang & Wei Tang & Senqi Yang & Qichao Tang & Yang Feng & Fang Zhang, 2022. "Agricultural Price Prediction Based on Combined Forecasting Model under Spatial-Temporal Influencing Factors," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-04-26 (Big Data)
- NEP-CMP-2021-04-26 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.09341. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.