IDEAS home Printed from https://ideas.repec.org/a/ags/ijfaec/334707.html
   My bibliography  Save this article

Volatility Transmissionin Agricultural Markets: Evidence from the Russia-Ukraine Conflict

Author

Listed:
  • Capitani, Daniel Henrique Dario
  • Gaio, Luiz Eduardo

Abstract

This study investigates the impacts of the Russia-Ukraine conflict on agricultural commodities price volatilities. The analysis is conducted considering the movements in crude oil prices and their consequences in the global and Brazilian agricultural commodities markets. We employ a bivariate DCC-GARCH model to examine the volatility spillover and volatility contagion among the crude oil, wheat, corn, and soybean markets. Our results indicate an increase in volatility transmission after a military conflict. The increase in price cross-correlation in this period confirms the existence of contagious in crude oil and agricultural markets. The impacts seem to be greater at the international level, especially in the wheat and corn markets, highlighting the importance of Russia and Ukraine in grain production. Despite the participation of Brazil in global market, volatility transmission was similar to the pre-conflict period in local markets, indicating that emerging countries had also experienced other effects, as the exchange rate fluctuation.

Suggested Citation

  • Capitani, Daniel Henrique Dario & Gaio, Luiz Eduardo, 2023. "Volatility Transmissionin Agricultural Markets: Evidence from the Russia-Ukraine Conflict," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 11(2), April.
  • Handle: RePEc:ags:ijfaec:334707
    DOI: 10.22004/ag.econ.334707
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/334707/files/vol11.no2.pp65.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.334707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Irwin, Scott H. & Good, Darrel L., 2009. "Market Instability in a New Era of Corn, Soybean, and Wheat Prices," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 24(1), pages 1-6.
    3. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    4. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    5. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    6. Wallace E. Tyner, 2010. "The integration of energy and agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 193-201, November.
    7. Akhtaruzzaman, Md & Boubaker, Sabri & Sensoy, Ahmet, 2021. "Financial contagion during COVID–19 crisis," Finance Research Letters, Elsevier, vol. 38(C).
    8. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    9. Marilyne Huchet-Bourdon, 2011. "Agricultural Commodity Price Volatility: An Overview," OECD Food, Agriculture and Fisheries Papers 52, OECD Publishing.
    10. Jayson Beckman & Amanda M. Countryman, 2021. "The Importance of Agriculture in the Economy: Impacts from COVID‐19," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1595-1611, October.
    11. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    12. Wang, Yihan & Bouri, Elie & Fareed, Zeeshan & Dai, Yuhui, 2022. "Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine," Finance Research Letters, Elsevier, vol. 49(C).
    13. Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Krzysztof Dmytrów & Joanna Landmesser & Beata Bieszk-Stolorz, 2021. "The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method," Energies, MDPI, vol. 14(13), pages 1-23, July.
    15. Brian D. Wright, 2011. "The Economics of Grain Price Volatility," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(1), pages 32-58.
    16. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Yaya, OlaOluwa S. & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Does oil connect differently with prominent assets during war? Analysis of intra-day data during the Russia-Ukraine saga," Resources Policy, Elsevier, vol. 77(C).
    17. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    18. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    19. Trujillo-Barrera, Andres & Mallory, Mindy L. & Garcia, Philip, 2012. "Volatility Spillovers in U.S. Crude Oil, Ethanol, and Corn Futures Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-16, August.
    20. Saghaian, Sayed & Nemati, Mehdi & Walters, Cory & Chen, Bo, 2018. "Asymmetric Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(1), January.
    21. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    22. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    23. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    24. Atems, Bebonchu & Melichar, Mark, 2019. "Do Global Crude Oil Market Shocks Have Differential Effects On Us Regions?," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1978-2008, July.
    25. Just, Małgorzata & Echaust, Krzysztof, 2022. "Dynamic spillover transmission in agricultural commodity markets: What has changed after the COVID-19 threat?," Economics Letters, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capitani, Daniel H D & Gaio, Luiz Eduardo & Mattos, Fabio L. & Franco Da Silveira, Rodrigo Lanna & Cruz, Jose Cesar, 2024. "Corn ethanol expansion in Brazil: Are volatility interconnectedness changing?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343612, Agricultural and Applied Economics Association.
    2. Bentivoglio, Deborah & Finco, Adele & Bacchi, Mirian, 2015. "Examining Price Transmission between Fuels and Food Prices: the Brazilian Sugar-Ethanol Market," 2015 Conference, August 9-14, 2015, Milan, Italy 211327, International Association of Agricultural Economists.
    3. Saghaian, Sayed H. & Nemati, Mehdi & Walters, Cory G. & Chen, Bo, 2017. "Asymmetric Price Volatility Interaction between U.S. Food and Energy Markets," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258240, Agricultural and Applied Economics Association.
    4. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    5. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
    6. Deyuan Zhang & Wensen She & Fang Qu & Chunyan He, 2023. "Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data," Energies, MDPI, vol. 16(16), pages 1-19, August.
    7. Noureddine Benlagha & Wafa Abdelmalek, 2024. "Dynamic connectedness between energy and agricultural commodities: insights from the COVID-19 pandemic and Russia–Ukraine conflict," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 781-825, September.
    8. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    9. Tan Ngoc Vu & Duc Hong Vo & Chi Minh Ho & Loan Thi-Hong Van, 2019. "Modeling the Impact of Agricultural Shocks on Oil Price in the US: A New Approach," JRFM, MDPI, vol. 12(3), pages 1-27, September.
    10. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    11. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    12. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    13. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    14. Chen, Kuan-Ju & Chen, Kuan-Heng, 2016. "Analysis of Energy and Agricultural Commodity Markets with the Policy Mandated: A Vine Copula-based ARMA-EGARCH Model," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236028, Agricultural and Applied Economics Association.
    15. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    16. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    18. Chishti, Muhammad Zubair & Khalid, Ali Awais & Sana, Moniba, 2023. "Conflict vs sustainability of global energy, agricultural and metal markets: A lesson from Ukraine-Russia war," Resources Policy, Elsevier, vol. 84(C).
    19. Uçak, Harun & Yelgen, Esin & Arı, Yakup, 2022. "The Role of Energy on the Price Volatility of Fruits and Vegetables: Evidence from Turkey," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(1), April.
    20. Le, Trung H. & Pham, Linh & Do, Hung X., 2023. "Price risk transmissions in the water-energy-food nexus: Impacts of climate risks and portfolio implications," Energy Economics, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijfaec:334707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iiaaktr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.