User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marco Corazza & Davide De March & Giacomo di Tollo, 2021. "Design of adaptive Elman networks for credit risk assessment," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 323-340, February.
- Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Malcolm Baker & Jeffrey Wurgler, 2007.
"Investor Sentiment in the Stock Market,"
Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
- Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," NBER Working Papers 13189, National Bureau of Economic Research, Inc.
- Lili Li & Shan Leng & Jun Yang & Mei Yu, 2016. "Stock Market Autoregressive Dynamics: A Multinational Comparative Study with Quantile Regression," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-15, September.
- Salvatore Ammirato & Gerarda Fattoruso & Antonio Violi, 2022. "Parsimonious AHP-DEA Integrated Approach for Efficiency Evaluation of Production Processes," JRFM, MDPI, vol. 15(7), pages 1-15, June.
- Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cai, Yi & Tang, Zhenpeng & Chen, Ying, 2024. "Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Bucci, 2020.
"Realized Volatility Forecasting with Neural Networks,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Eliana Angelini & Matteo Foglia, 2018. "The Relationship Between IPO and Macroeconomics Factors: an Empirical Analysis from UK Market," Annals of Economics and Finance, Society for AEF, vol. 19(1), pages 319-336, May.
- Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2014. "Facebook's daily sentiment and international stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 730-743.
- Refk Selmi & Jamal Bouoiyour, 2020.
"Arab geopolitics in turmoil: Implications of Qatar-Gulf crisis for business,"
International Economics, CEPII research center, issue 161, pages 100-119.
- Selmi, Refk & Bouoiyour, Jamal, 2020. "Arab geopolitics in turmoil: Implications of Qatar-Gulf crisis for business," International Economics, Elsevier, vol. 161(C), pages 100-119.
- Jamal Bouoiyour & Refk Selmi, 2019. "Arab Geopolitics in Turmoil: Implications Of Qatar-Gulf Crisis for Business," Working Papers 1337, Economic Research Forum, revised 21 Aug 2019.
- Refk Selmi & Jamal Bouoiyour, 2020. "Arab geopolitics in turmoil: Implications of Qatar-Gulf crisis for business," Post-Print hal-01879682, HAL.
- Yu, Jianfeng & Yuan, Yu, 2011. "Investor sentiment and the mean-variance relation," Journal of Financial Economics, Elsevier, vol. 100(2), pages 367-381, May.
- Ali, Fahad & Bouri, Elie & Naifar, Nader & Shahzad, Syed Jawad Hussain & AlAhmad, Mohammad, 2022. "An examination of whether gold-backed Islamic cryptocurrencies are safe havens for international Islamic equity markets," Research in International Business and Finance, Elsevier, vol. 63(C).
- Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
- Oscar V. De la Torre-Torres & José Álvarez-García & María de la Cruz del Río-Rama, 2024. "An EM/MCMC Markov-Switching GARCH Behavioral Algorithm for Random-Length Lumber Futures Trading," Mathematics, MDPI, vol. 12(3), pages 1-21, February.
- Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020.
"Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities,"
Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Jules Sadefo-Kamdem & Rose Bandolo Essomba & James Njong Berinyuy, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Post-Print hal-02921304, HAL.
- Ahmed El Oubani, 2024. "Investor sentiment and sustainable investment: evidence from North African stock markets," Future Business Journal, Springer, vol. 10(1), pages 1-20, December.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023.
"A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working Papers 202056, University of Pretoria, Department of Economics.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working papers 2020-10, University of Connecticut, Department of Economics.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012.
"A comprehensive look at financial volatility prediction by economic variables,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2010. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," CREATES Research Papers 2010-58, Department of Economics and Business Economics, Aarhus University.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Oana Mădălina POPESCU, 2019. "Investor Sentiment on the Stock Market using Artificial Neural Networks," REVISTA DE MANAGEMENT COMPARAT INTERNATIONAL/REVIEW OF INTERNATIONAL COMPARATIVE MANAGEMENT, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 20(5), pages 508-518, December.
- Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
- Omar Esqueda & Yongli Luo & Dave Jackson, 2015. "The linkage between the U.S. “fear index” and ADR premiums under non-frictionless stock markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 541-556, July.
- Haritha P H, 2024. "The Effect of Heuristics on Indian Stock Market Investors: Investor Sentiment as a Mediator," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 49(1), pages 43-61, February.
- Ao Yang & Qing Ye & Jia Zhai, 2024. "Volatility forecasting with Hybrid‐long short‐term memory models: Evidence from the COVID‐19 period," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2766-2786, July.
- Ehsan Hoseinzade & Saman Haratizadeh, 2018. "CNNPred: CNN-based stock market prediction using several data sources," Papers 1810.08923, arXiv.org.
More about this item
Keywords
stock market prediction; social network analysis; deep learning; user behavior modeling; financial market emotion analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2950-:d:1184972. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.