IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i491y2010p1178-1187.html
   My bibliography  Save this article

Approximate Bayesian Computation: A Nonparametric Perspective

Author

Listed:
  • Blum, Michael G. B.

Abstract

No abstract is available for this item.

Suggested Citation

  • Blum, Michael G. B., 2010. "Approximate Bayesian Computation: A Nonparametric Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1178-1187.
  • Handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1178-1187
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2010.tm09448
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soubeyrand, Samuel & Haon-Lasportes, Emilie, 2015. "Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 84-92.
    2. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Post-Print hal-02891046, HAL.
    3. Valerio Scalone, 2018. "Estimating Non-Linear DSGEs with the Approximate Bayesian Computation: an application to the Zero Lower Bound," Working papers 688, Banque de France.
    4. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    5. Goffard, Pierre-Olivier & Laub, Patrick J., 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 350-371.
    6. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    7. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    8. Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).
    9. Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
    10. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
    11. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    12. Tatiana Dmitrieva & Kristin McCullough & Nader Ebrahimi, 2021. "Improved approximate Bayesian computation methods via empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1533-1552, June.
    13. Rodrigues, G.S. & Nott, David J. & Sisson, S.A., 2016. "Functional regression approximate Bayesian computation for Gaussian process density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 229-241.
    14. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    15. Alexander Buchholz & Nicolas CHOPIN, 2017. "Improving approximate Bayesian computation via quasi Monte Carlo," Working Papers 2017-37, Center for Research in Economics and Statistics.
    16. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    17. Kristin McCullough & Tatiana Dmitrieva & Nader Ebrahimi, 2022. "New approximate Bayesian computation algorithm for censored data," Computational Statistics, Springer, vol. 37(3), pages 1369-1397, July.
    18. repec:bla:istatr:v:83:y:2015:i:3:p:405-435 is not listed on IDEAS
    19. David T. Frazier & Gael M. Martin & Christian P. Robert, 2015. "On Consistency of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 19/15, Monash University, Department of Econometrics and Business Statistics.
    20. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    21. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    22. Ernesto Carrella & Richard Bailey & Jens Koed Madsen, 2020. "Calibrating Agent-Based Models with Linear Regressions," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(1), pages 1-7.
    23. Thomas A. Dean & Sumeetpal S. Singh & Ajay Jasra & Gareth W. Peters, 2014. "Parameter Estimation for Hidden Markov Models with Intractable Likelihoods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 970-987, December.
    24. Menéndez, P. & Fan, Y. & Garthwaite, P.H. & Sisson, S.A., 2014. "Simultaneous adjustment of bias and coverage probabilities for confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 35-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1178-1187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.