IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i1d10.1007_s11203-016-9153-1.html
   My bibliography  Save this article

A non-parametric Bayesian approach to decompounding from high frequency data

Author

Listed:
  • Shota Gugushvili

    (Leiden University)

  • Frank Meulen

    (Delft University of Technology)

  • Peter Spreij

    (University of Amsterdam
    Radboud University Nijmegen)

Abstract

Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density $$f_0$$ f 0 of its jump sizes, as well as of its intensity $$\lambda _0.$$ λ 0 . We take a Bayesian approach to the problem and specify the prior on $$f_0$$ f 0 as the Dirichlet location mixture of normal densities. An independent prior for $$\lambda _0$$ λ 0 is assumed to be compactly supported and to possess a positive density with respect to the Lebesgue measure. We show that under suitable assumptions the posterior contracts around the pair $$(\lambda _0,\,f_0)$$ ( λ 0 , f 0 ) at essentially (up to a logarithmic factor) the $$\sqrt{n\Delta }$$ n Δ -rate, where n is the number of observations and $$\Delta $$ Δ is the mesh size at which the process is sampled. The emphasis is on high frequency data, $$\Delta \rightarrow 0,$$ Δ → 0 , but the obtained results are also valid for fixed $$\Delta .$$ Δ . In either case we assume that $$n\Delta \rightarrow \infty .$$ n Δ → ∞ . Our main result implies existence of Bayesian point estimates converging (in the frequentist sense, in probability) to $$(\lambda _0,\,f_0)$$ ( λ 0 , f 0 ) at the same rate. We also discuss a practical implementation of our approach. The computational problem is dealt with by inclusion of auxiliary variables and we develop a Markov chain Monte Carlo algorithm that samples from the joint distribution of the unknown parameters in the mixture density and the introduced auxiliary variables. Numerical examples illustrate the feasibility of this approach.

Suggested Citation

  • Shota Gugushvili & Frank Meulen & Peter Spreij, 2018. "A non-parametric Bayesian approach to decompounding from high frequency data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 53-79, April.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9153-1
    DOI: 10.1007/s11203-016-9153-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-016-9153-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-016-9153-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Boris Buchmann & Rudolf Grübel, 2004. "Decompounding poisson random sums: Recursively truncated estimates in the discrete case," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(4), pages 743-756, December.
    3. Fabienne Comte & Céline Duval & Valentine Genon-Catalot, 2014. "Nonparametric density estimation in compound Poisson processes using convolution power estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(1), pages 163-183, January.
    4. Nickl, Richard & Reiß, Markus, 2012. "A Donsker theorem for Lévy measures," SFB 649 Discussion Papers 2012-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    6. Fabienne Comte & Valentine Genon-Catalot, 2010. "Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 290-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Post-Print hal-02891046, HAL.
    2. Goffard, Pierre-Olivier & Laub, Patrick J., 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 350-371.
    3. Wolfgang Karcher & Stefan Roth & Evgeny Spodarev & Corinna Walk, 2019. "An inverse problem for infinitely divisible moving average random fields," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 263-306, July.
    4. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    5. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
    2. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.
    3. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    4. Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
    5. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    6. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    7. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    8. Francisco Richter & Bart Haegeman & Rampal S. Etienne & Ernst C. Wit, 2020. "Introducing a general class of species diversification models for phylogenetic trees," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 261-274, August.
    9. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    10. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.
    11. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    12. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    13. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    14. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    15. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    16. Rosychuk, Rhonda J. & Shofiqul Islam, 2009. "Parameter estimation in a model for misclassified Markov data -- a Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3805-3816, September.
    17. Hlouskova, Jaroslava & Sögner, Leopold, 2020. "GMM estimation of affine term structure models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 2-15.
    18. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    19. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    20. Hwan Chung & Brian P. Flaherty & Joseph L. Schafer, 2006. "Latent class logistic regression: application to marijuana use and attitudes among high school seniors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 723-743, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:1:d:10.1007_s11203-016-9153-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.