IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.3849.html
   My bibliography  Save this paper

A Copula Based Bayesian Approach for Paid-Incurred Claims Models for Non-Life Insurance Reserving

Author

Listed:
  • Gareth W. Peters
  • Alice X. D. Dong
  • Robert Kohn

Abstract

Our article considers the class of recently developed stochastic models that combine claims payments and incurred losses information into a coherent reserving methodology. In particular, we develop a family of Heirarchical Bayesian Paid-Incurred-Claims models, combining the claims reserving models of Hertig et al. (1985) and Gogol et al. (1993). In the process we extend the independent log-normal model of Merz et al. (2010) by incorporating different dependence structures using a Data-Augmented mixture Copula Paid-Incurred claims model. The utility and influence of incorporating both payment and incurred losses into estimating of the full predictive distribution of the outstanding loss liabilities and the resulting reserves is demonstrated in the following cases: (i) an independent payment (P) data model; (ii) the independent Payment-Incurred Claims (PIC) data model of Merz et al. (2010); (iii) a novel dependent lag-year telescoping block diagonal Gaussian Copula PIC data model incorporating conjugacy via transformation; (iv) a novel data-augmented mixture Archimedean copula dependent PIC data model. Inference in such models is developed via a class of adaptive Markov chain Monte Carlo sampling algorithms. These incorporate a data-augmentation framework utilized to efficiently evaluate the likelihood for the copula based PIC model in the loss reserving triangles. The adaptation strategy is based on representing a positive definite covariance matrix by the exponential of a symmetric matrix as proposed by Leonard et al. (1992).

Suggested Citation

  • Gareth W. Peters & Alice X. D. Dong & Robert Kohn, 2012. "A Copula Based Bayesian Approach for Paid-Incurred Claims Models for Non-Life Insurance Reserving," Papers 1210.3849, arXiv.org, revised Dec 2012.
  • Handle: RePEc:arx:papers:1210.3849
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.3849
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peters, Gareth W. & Wüthrich, Mario V. & Shevchenko, Pavel V., 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 36-51, August.
    2. Merz, Michael & Wüthrich, Mario V., 2010. "Paid-incurred chain claims reserving method," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 568-579, June.
    3. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    4. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    5. Aleksey Min & Claudia Czado, 2010. "Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 511-546, Fall.
    6. Hertig, Joakim, 1985. "A Statistical Approach to IBNR-Reserves in Marine Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 171-183, November.
    7. Gogol, Daniel, 1993. "Using expected loss ratios in reserving," Insurance: Mathematics and Economics, Elsevier, vol. 12(3), pages 297-299, June.
    8. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    9. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    10. Gareth W. Peters & Mario V. Wuthrich & Pavel V. Shevchenko, 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Papers 1004.2548, arXiv.org.
    11. Paul Embrechts, 2009. "Copulas: A Personal View," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 639-650, September.
    12. Happ, Sebastian & Wüthrich, Mario V., 2013. "Paid-Incurred Chain Reserving Method With Dependence Modeling," ASTIN Bulletin, Cambridge University Press, vol. 43(1), pages 1-20, January.
    13. Gareth W. Peters & Balakrishnan Kannan & Ben Lasscock & Chris Mellen, 2010. "Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model," Papers 1004.3830, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    2. Efstathios Panayi & Gareth Peters, 2015. "Stochastic simulation framework for the Limit Order Book using liquidity motivated agents," Papers 1501.02447, arXiv.org, revised Jan 2015.
    3. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
    4. Jan Barlak & Matus Bakon & Martin Rovnak & Martina Mokrisova, 2022. "Heat Equation as a Tool for Outliers Mitigation in Run-Off Triangles for Valuing the Technical Provisions in Non-Life Insurance Business," Risks, MDPI, vol. 10(9), pages 1-17, August.
    5. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    6. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    7. Ames, Matthew & Bagnarosa, Guillaume & Peters, Gareth W., 2017. "Violations of uncovered interest rate parity and international exchange rate dependences," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 162-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    2. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    3. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    4. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    5. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    6. Hu, Genhua & Fan, Gang-Zhi, 2022. "Empirical evidence of risk contagion across regional housing markets in China," Economic Modelling, Elsevier, vol. 115(C).
    7. Alessandro Ricotta & Edoardo Luini, 2019. "Bayesian Estimation of Structure Variables in the Collective Risk Model for Reserve Risk," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(2), pages 1-2.
    8. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2022. "Mack-Net model: Blending Mack's model with Recurrent Neural Networks," Papers 2205.07334, arXiv.org.
    9. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    10. Zhichao Zhang & Fan Zhang & Zhuang Zhang, 2013. "Strategic Asset Allocation for China's Foreign Reserves: A Copula Approach," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(6), pages 1-21, November.
    11. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    12. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    13. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    14. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    15. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    16. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    17. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    18. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    19. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    20. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.3849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.