IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v59y2014icp258-278.html
   My bibliography  Save this article

A copula based Bayesian approach for paid–incurred claims models for non-life insurance reserving

Author

Listed:
  • Peters, Gareth W.
  • Dong, Alice X.D.
  • Kohn, Robert

Abstract

Our article considers the class of recently developed stochastic models that combine claims payments and incurred losses information into a coherent reserving methodology. In particular, we develop a family of hierarchical Bayesian paid–incurred claims models, combining the claims reserving models of Hertig (1985) and Gogol (1993). In the process we extend the independent log-normal model of Merz and Wüthrich (2010) by incorporating different dependence structures using a Data-Augmented mixture Copula paid–incurred claims model.

Suggested Citation

  • Peters, Gareth W. & Dong, Alice X.D. & Kohn, Robert, 2014. "A copula based Bayesian approach for paid–incurred claims models for non-life insurance reserving," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 258-278.
  • Handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:258-278
    DOI: 10.1016/j.insmatheco.2014.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714001255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peters, Gareth W. & Wüthrich, Mario V. & Shevchenko, Pavel V., 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 36-51, August.
    2. Gogol, Daniel, 1993. "Using expected loss ratios in reserving," Insurance: Mathematics and Economics, Elsevier, vol. 12(3), pages 297-299, June.
    3. Merz, Michael & Wüthrich, Mario V., 2010. "Paid-incurred chain claims reserving method," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 568-579, June.
    4. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    5. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    6. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    7. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    8. Gareth W. Peters & Mario V. Wuthrich & Pavel V. Shevchenko, 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Papers 1004.2548, arXiv.org.
    9. Aleksey Min & Claudia Czado, 2010. "Bayesian Inference for Multivariate Copulas Using Pair-Copula Constructions," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 511-546, Fall.
    10. Hertig, Joakim, 1985. "A Statistical Approach to IBNR-Reserves in Marine Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 171-183, November.
    11. Paul Embrechts, 2009. "Copulas: A Personal View," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 639-650, September.
    12. Happ, Sebastian & Wüthrich, Mario V., 2013. "Paid-Incurred Chain Reserving Method With Dependence Modeling," ASTIN Bulletin, Cambridge University Press, vol. 43(1), pages 1-20, January.
    13. Gareth W. Peters & Balakrishnan Kannan & Ben Lasscock & Chris Mellen, 2010. "Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model," Papers 1004.3830, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    2. Efstathios Panayi & Gareth W. Peters, 2015. "Stochastic simulation framework for the limit order book using liquidity-motivated agents," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-52.
    3. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    4. Ames, Matthew & Bagnarosa, Guillaume & Peters, Gareth W., 2017. "Violations of uncovered interest rate parity and international exchange rate dependences," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 162-187.
    5. Jan Barlak & Matus Bakon & Martin Rovnak & Martina Mokrisova, 2022. "Heat Equation as a Tool for Outliers Mitigation in Run-Off Triangles for Valuing the Technical Provisions in Non-Life Insurance Business," Risks, MDPI, vol. 10(9), pages 1-17, August.
    6. Efstathios Panayi & Gareth Peters, 2015. "Stochastic simulation framework for the Limit Order Book using liquidity motivated agents," Papers 1501.02447, arXiv.org, revised Jan 2015.
    7. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    2. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    3. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    4. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    5. Karthik Sriram & Peng Shi, 2021. "Stochastic loss reserving: A new perspective from a Dirichlet model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 195-230, March.
    6. Hu, Genhua & Fan, Gang-Zhi, 2022. "Empirical evidence of risk contagion across regional housing markets in China," Economic Modelling, Elsevier, vol. 115(C).
    7. Alessandro Ricotta & Edoardo Luini, 2019. "Bayesian Estimation of Structure Variables in the Collective Risk Model for Reserve Risk," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(2), pages 1-2.
    8. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2022. "Mack-Net model: Blending Mack's model with Recurrent Neural Networks," Papers 2205.07334, arXiv.org.
    9. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    10. Zhichao Zhang & Fan Zhang & Zhuang Zhang, 2013. "Strategic Asset Allocation for China's Foreign Reserves: A Copula Approach," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(6), pages 1-21, November.
    11. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    12. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    13. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    14. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    15. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    16. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    17. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    18. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    19. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    20. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:258-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.