IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p466-473.html
   My bibliography  Save this article

Joint modelling of the total amount and the number of claims by conditionals

Author

Listed:
  • Sarabia, José María
  • Guillén, Montserrat

Abstract

In the risk theory context, let us consider the classical collective model. The aim of this paper is to obtain a flexible bivariate joint distribution for modelling the couple (S,N), where N is a count variable and S=X1+...+XN is the total claim amount. A generalization of the classical hierarchical model, where now we assume that the conditional distributions of SN and NS belong to some prescribed parametric families, is presented. A basic theorem of compatibility in conditional distributions of the type S given N and N given S is stated. Using a known theorem for exponential families and results from functional equations new models are obtained. We describe in detail the extension of two classical collective models, which now we call Poisson-Gamma and the Poisson-Binomial conditionals models. Other conditionals models are proposed, including the Poisson-Lognormal conditionals distribution, the Geometric-Gamma conditionals model and a model with inverse Gaussian conditionals. Further developments of collective risk modelling are given.

Suggested Citation

  • Sarabia, José María & Guillén, Montserrat, 2008. "Joint modelling of the total amount and the number of claims by conditionals," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 466-473, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:466-473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00121-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    2. José Sarabia & Enrique Castillo & Marta Pascual & María Sarabia, 2007. "Bivariate income distributions with lognormal conditionals," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 371-383, December.
    3. Pinquet, Jean, 1997. "Allowance for Cost of Claims in Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 33-57, May.
    4. Smyth, Gordon K. & Jørgensen, Bent, 2002. "Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 143-157, May.
    5. Panjer, Harry H. & Willmot, Gordon E., 1981. "Finite Sum Evaluation of the Negative Binomial-Exponential Model," ASTIN Bulletin, Cambridge University Press, vol. 12(2), pages 133-137, December.
    6. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    7. Spanos,Aris, 1999. "Probability Theory and Statistical Inference," Cambridge Books, Cambridge University Press, number 9780521424080.
    8. J. Pinquet & M. Guillén & C. Bolancé, 2000. "Long-range contagion in automobile insurance data : estimation and implications for experience rating," THEMA Working Papers 2000-43, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Renshaw, Arthur E., 1994. "Modelling the Claims Process in the Presence of Covariates," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 265-285, November.
    10. Sarabia, José María & Gómez-Déniz, Emilio & Vázquez-Polo, Francisco J., 2004. "On the Use of Conditional Specification Models in Claim Count Distributions: an Application to Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 34(1), pages 85-98, May.
    11. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    12. José María Sarabia & Enrique Castillo & Emilio Gómez‐Déniz & Francisco J. Vázquez‐Polo, 2005. "A Class of Conjugate Priors for Log‐Normal Claims Based on Conditional Specification," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(3), pages 479-495, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnold, Barry C. & Sarabia, José María, 2022. "Conditional specification of statistical models: Classical models, new developments and challenges," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Gómez–Déniz, E. & Pérez–Rodríguez, J.V., 2019. "Modelling distribution of aggregate expenditure on tourism," Economic Modelling, Elsevier, vol. 78(C), pages 293-308.
    3. Urbina, Jilber & Guillén, Montserrat, 2013. "An application of capital allocation principles to operational risk," Working Papers 2072/222201, Universitat Rovira i Virgili, Department of Economics.
    4. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2016. "Risk aggregation in multivariate dependent Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 154-163.
    5. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
    6. Ramon ALEMANY & Catalina BOLANCÉ & Montserrat GUILLÉN & Alemar E. PADILLA-BARRETO, 2016. "Combining Parametric And Non-Parametric Methods To Compute Value-At-Risk," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(4), pages 61-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2020. "Modeling the Conditional Dependence between Discrete and Continuous Random Variables with Applications in Insurance," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
    2. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    3. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    4. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.
    5. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    6. Angers, Jean-François & Desjardins, Denise & Dionne, Georges, 2004. "Modèle Bayésien de tarification de l’assurance des flottes de véhicules," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 253-303, Juin-Sept.
    7. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    8. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    9. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Post-Print hal-02891046, HAL.
    10. Amela Omeraševiæ & Jasmina Selimoviæ, 2020. "Risk factors selection with data mining methods for insurance premium ratemaking," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 38(2), pages 667-696.
    11. Lluis Bermúdez i Morata, 2008. "A priori ratemaking using bivariate poisson regression models," Working Papers XREAP2008-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2008.
    12. Jean Pinquet, 2012. "Experience rating in non-life insurance," Working Papers hal-00677100, HAL.
    13. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    14. Desjardins, Denise & Dionne, Georges & Pinquet, Jean, 2001. "Experience Rating Schemes for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 81-105, May.
    15. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    16. Omerašević Amela & Selimović Jasmina, 2020. "Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 124-139, December.
    17. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    18. Goffard, Pierre-Olivier & Laub, Patrick J., 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 350-371.
    19. Arnold, Barry C. & Sarabia, José María, 2022. "Conditional specification of statistical models: Classical models, new developments and challenges," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:466-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.