A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- O. Bardou & N. Frikha & G. Pagès, 2016. "CVaR HEDGING USING QUANTIZATION-BASED STOCHASTIC APPROXIMATION ALGORITHM," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 184-229, January.
- Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020.
"XVA metrics for CCP optimization,"
Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
- Claudio Albanese & Yannick Armenti & Stéphane Crépey, 2020. "XVA Metrics for CCP Optimisation," Post-Print hal-03910114, HAL.
- Michael B. Giles & Abdul-Lateef Haji-Ali, 2018. "Multilevel nested simulation for efficient risk estimation," Papers 1802.05016, arXiv.org, revised Feb 2019.
- Acerbi, Carlo & Tasche, Dirk, 2002.
"On the coherence of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
- Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
- Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
- Michael B. Gordy & Sandeep Juneja, 2010.
"Nested Simulation in Portfolio Risk Measurement,"
Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
- Michael B. Gordy & Sandeep Juneja, 2008. "Nested simulation in portfolio risk measurement," Finance and Economics Discussion Series 2008-21, Board of Governors of the Federal Reserve System (U.S.).
- Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
- Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Nested Multilevel Monte Carlo with Biased and Antithetic Sampling," Papers 2308.07835, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stéphane Crépey & Noufel Frikha & Azar Louzi, 2024. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04037328, HAL.
- Stéphane Crépey & Noufel Frikha & Azar Louzi, 2024. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Working Papers hal-04037328, HAL.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
- Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
- Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
- Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
- Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
- David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2018. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Working Papers hal-01710394, HAL.
- Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
- Devang Sinha & Siddhartha P. Chakrabarty, 2024. "Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application," Papers 2407.18504, arXiv.org.
- Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.
- David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2019. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Post-Print hal-01710394, HAL.
- Mathieu Cambou & Damir Filipović, 2018. "Replicating portfolio approach to capital calculation," Finance and Stochastics, Springer, vol. 22(1), pages 181-203, January.
- Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
- Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020.
"Deep xVA solver -- A neural network based counterparty credit risk management framework,"
Papers
2005.02633, arXiv.org, revised Dec 2022.
- Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
- David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
- Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
- Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2023-05-15 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.01207. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.