IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-04037328.html
   My bibliography  Save this paper

A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation

Author

Listed:
  • Stéphane Crépey

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

  • Noufel Frikha

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Azar Louzi

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

Abstract

We propose a multilevel stochastic approximation (MLSA) scheme for the computation of the value-at-risk (VaR) and expected shortfall (ES) of a financial loss, which can only be computed via simulations conditional on the realization of future risk factors. Thus, the problem of estimating its VaR and ES is nested in nature and can be viewed as an instance of stochastic approximation problems with biased innovations. In this framework, for a prescribed accuracy ε, the optimal complexity of a nested stochastic approximation algorithm is shown to be of order ε−3. To estimate the VaR, our MLSA algorithm attains an optimal complexity of order ε−2−δ , where δ < 1 is some parameter depending on the integrability degree of the loss, while to estimate the ES, it achieves an optimal complexity of order ε−2 |ln ε|2. Numerical studies of the joint evolution of the error rate and the execution time demonstrate how our MLSA algorithm regains a significant amount of the performance lost due to the nested nature of the problem.

Suggested Citation

  • Stéphane Crépey & Noufel Frikha & Azar Louzi, 2024. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04037328, HAL.
  • Handle: RePEc:hal:cesptp:hal-04037328
    Note: View the original document on HAL open archive server: https://hal.science/hal-04037328v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04037328v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albanese Claudio & Armenti Yannick & Crépey Stéphane, 2020. "XVA metrics for CCP optimization," Statistics & Risk Modeling, De Gruyter, vol. 37(1-2), pages 25-53, January.
    2. Michael B. Giles & Abdul-Lateef Haji-Ali, 2018. "Multilevel nested simulation for efficient risk estimation," Papers 1802.05016, arXiv.org, revised Feb 2019.
    3. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    4. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    5. O. Bardou & N. Frikha & G. Pagès, 2016. "CVaR HEDGING USING QUANTIZATION-BASED STOCHASTIC APPROXIMATION ALGORITHM," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 184-229, January.
    6. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    7. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. St'ephane Cr'epey & Noufel Frikha & Azar Louzi, 2023. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Papers 2304.01207, arXiv.org, revised Jul 2024.
    2. Stéphane Crépey & Noufel Frikha & Azar Louzi, 2024. "A Multilevel Stochastic Approximation Algorithm for Value-at-Risk and Expected Shortfall Estimation," Working Papers hal-04037328, HAL.
    3. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    4. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    5. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    6. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    7. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    8. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    9. Devang Sinha & Siddhartha P. Chakrabarty, 2024. "Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application," Papers 2407.18504, arXiv.org.
    10. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.
    11. Mathieu Cambou & Damir Filipović, 2018. "Replicating portfolio approach to capital calculation," Finance and Stochastics, Springer, vol. 22(1), pages 181-203, January.
    12. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    13. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    14. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2018. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Working Papers hal-01710394, HAL.
    15. David Barrera & Stéphane Crépey & Babacar Diallo & Gersende Fort & Emmanuel Gobet & Uladzislau Stazhynski, 2019. "Stochastic Approximation Schemes for Economic Capital and Risk Margin Computations," Post-Print hal-01710394, HAL.
    16. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    17. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    18. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    19. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    20. Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-04037328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.