IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.05886.html
   My bibliography  Save this paper

Efficient Risk Estimation for the Credit Valuation Adjustment

Author

Listed:
  • Michael B. Giles
  • Abdul-Lateef Haji-Ali
  • Jonathan Spence

Abstract

The valuation of over-the-counter derivatives is subject to a series of valuation adjustments known as xVA, which pose additional risks for financial institutions. Associated risk measures, such as the value-at-risk of an underlying valuation adjustment, play an important role in managing these risks. Monte Carlo methods are often regarded as inefficient for computing such measures. As an example, we consider the value-at-risk of the Credit Valuation Adjustment (CVA-VaR), which can be expressed using a triple nested expectation. Traditional Monte Carlo methods are often inefficient at handling several nested expectations. Utilising recent developments in multilevel nested simulation for probabilities, we construct a hierarchical estimator of the CVA-VaR which reduces the computational complexity by 3 orders of magnitude compared to standard Monte Carlo.

Suggested Citation

  • Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
  • Handle: RePEc:arx:papers:2301.05886
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.05886
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael B. Giles & Lukasz Szpruch, 2012. "Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L\'{e}vy area simulation," Papers 1202.6283, arXiv.org, revised May 2014.
    2. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    3. Michael Giles & Desmond Higham & Xuerong Mao, 2009. "Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff," Finance and Stochastics, Springer, vol. 13(3), pages 403-413, September.
    4. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    5. Dereich, Steffen, 2021. "General multilevel adaptations for stochastic approximation algorithms II: CLTs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 226-260.
    6. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    7. K. Bujok & B. M. Hambly & C. Reisinger, 2015. "Multilevel Simulation of Functionals of Bernoulli Random Variables with Application to Basket Credit Derivatives," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 579-604, September.
    8. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    9. Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stéphane Crépey & Noufel Frikha & Azar Louzi & Jonathan Spence, 2024. "Adaptive Multilevel Stochastic Approximation of the Value-at-Risk [Approximation stochastique adaptative à plusieurs niveaux de la valeur à risque]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04670735, HAL.
    2. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    3. Roberto Daluiso & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning," Papers 2312.14044, arXiv.org.
    4. St'ephane Cr'epey & Noufel Frikha & Azar Louzi & Gilles Pag`es, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Papers 2311.15333, arXiv.org, revised Jul 2024.
    5. St'ephane Cr'epey & Noufel Frikha & Azar Louzi & Jonathan Spence, 2024. "Adaptive Multilevel Stochastic Approximation of the Value-at-Risk," Papers 2408.06531, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael B. Giles & Abdul-Lateef Haji-Ali, 2019. "Sub-sampling and other considerations for efficient risk estimation in large portfolios," Papers 1912.05484, arXiv.org, revised Apr 2022.
    2. Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Nested Multilevel Monte Carlo with Biased and Antithetic Sampling," Papers 2308.07835, arXiv.org.
    3. Alfonsi, Aurélien & Cherchali, Adel & Infante Acevedo, Jose Arturo, 2021. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 234-260.
    4. Goda, Takashi & Kitade, Wataru, 2023. "Constructing unbiased gradient estimators with finite variance for conditional stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 743-763.
    5. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.
    6. Aur'elien Alfonsi & Adel Cherchali & Jose Arturo Infante Acevedo, 2020. "Multilevel Monte-Carlo for computing the SCR with the standard formula and other stress tests," Papers 2010.12651, arXiv.org, revised Apr 2021.
    7. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    8. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    9. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    10. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    11. Daphné Giorgi & Vincent Lemaire & Gilles Pagès, 2020. "Weak Error for Nested Multilevel Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1325-1348, September.
    12. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    13. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    14. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    15. Zhou, Zhengqing & Wang, Guanyang & Blanchet, Jose H. & Glynn, Peter W., 2023. "Unbiased Optimal Stopping via the MUSE," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    16. Zhengqing Zhou & Guanyang Wang & Jose Blanchet & Peter W. Glynn, 2021. "Unbiased Optimal Stopping via the MUSE," Papers 2106.02263, arXiv.org, revised Dec 2022.
    17. Michael B. Giles & Abdul-Lateef Haji-Ali, 2022. "Multilevel Path Branching for Digital Options," Papers 2209.03017, arXiv.org, revised Jun 2024.
    18. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    19. Ahmed Kebaier & Jérôme Lelong, 2017. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Working Papers hal-01214840, HAL.
    20. Yasa Syed & Guanyang Wang, 2023. "Optimal randomized multilevel Monte Carlo for repeatedly nested expectations," Papers 2301.04095, arXiv.org, revised May 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.05886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.