IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01883419.html
   My bibliography  Save this paper

Optimal investment with possibly non-concave utilities and no-arbitrage: a measure theoretical approach

Author

Listed:
  • Romain Blanchard

    (LMR - Laboratoire de Mathématiques de Reims - URCA - Université de Reims Champagne-Ardenne - CNRS - Centre National de la Recherche Scientifique)

  • Laurence Carassus

    (PULV - Pôle Universitaire Léonard de Vinci)

  • Miklos Rasonyi

Abstract

We consider a discrete-time financial market model with finite time horizon and investors with utility functions d efined on the non-negative half-line. We allow these functions to be random, non-concave and non-smooth. We use a dynamic programming framework together with measurable selection arguments to establish both the characterization of the no-arbitrage property for such markets and the existence of an optimal portfolio strategy for such investors.

Suggested Citation

  • Romain Blanchard & Laurence Carassus & Miklos Rasonyi, 2018. "Optimal investment with possibly non-concave utilities and no-arbitrage: a measure theoretical approach," Post-Print hal-01883419, HAL.
  • Handle: RePEc:hal:journl:hal-01883419
    DOI: 10.1007/s00186-018-0635-3
    Note: View the original document on HAL open archive server: https://hal.science/hal-01883419v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01883419v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s00186-018-0635-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcel Nutz, 2016. "Utility Maximization Under Model Uncertainty In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 252-268, April.
    2. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    3. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    4. Jörn Sass, 2005. "Portfolio optimization under transaction costs in the CRR model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(2), pages 239-259, June.
    5. Laurence Carassus & Mikl'os R'asonyi & Andrea M. Rodrigues, 2015. "Non-concave utility maximisation on the positive real axis in discrete time," Papers 1501.03123, arXiv.org, revised Apr 2015.
    6. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    7. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    8. repec:dau:papers:123456789/2317 is not listed on IDEAS
    9. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    10. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    2. Romain Blanchard & Laurence Carassus & Mikl'os R'asonyi, 2016. "Non-concave optimal investment and no-arbitrage: a measure theoretical approach," Papers 1602.06685, arXiv.org, revised Aug 2016.
    3. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    4. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    5. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    6. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    7. Laurence Carassus & Massinissa Ferhoune, 2024. "Nonconcave Robust Utility Maximization under Projective Determinacy," Papers 2403.11824, arXiv.org.
    8. Ariel Neufeld & Mario Šikić, 2019. "Nonconcave robust optimization with discrete strategies under Knightian uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(2), pages 229-253, October.
    9. Mikl'os R'asonyi & Andrea Meireles-Rodrigues, 2018. "On Utility Maximisation Under Model Uncertainty in Discrete-Time Markets," Papers 1801.06860, arXiv.org, revised Jul 2020.
    10. Romain Blanchard & Laurence Carassus, 2019. "No-arbitrage with multiple-priors in discrete time," Papers 1904.08780, arXiv.org, revised Oct 2019.
    11. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    12. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    14. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    15. Laurence Carassus, 2021. "Quasi-sure essential supremum and applications to finance," Papers 2107.12862, arXiv.org, revised Mar 2024.
    16. Claudio Fontana & Wolfgang J. Runggaldier, 2020. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Papers 2006.15563, arXiv.org, revised Sep 2020.
    17. Laurence Carassus & Miklós Rásonyi, 2007. "Optimal Strategies and Utility-Based Prices Converge When Agents’ Preferences Do," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 102-117, February.
    18. Mikl'os R'asonyi & Jos'e G. Rodr'iguez-Villarreal, 2014. "Optimal investment under behavioural criteria -- a dual approach," Papers 1405.3812, arXiv.org, revised Jun 2014.
    19. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    20. Ariel Neufeld & Mario Sikic, 2017. "Nonconcave Robust Optimization with Discrete Strategies under Knightian Uncertainty," Papers 1711.03875, arXiv.org, revised Apr 2019.

    More about this item

    Keywords

    no-arbitrage condition; non-concave utility functions; optimal investment;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01883419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.