IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.04459.html
   My bibliography  Save this paper

Two-fund separation under hyperbolically distributed returns and concave utility function

Author

Listed:
  • Nuerxiati Abudurexiti
  • Erhan Bayraktar
  • Takaki Hayashi
  • Hasanjan Sayit

Abstract

Portfolio selection problems that optimize expected utility are usually difficult to solve. If the number of assets in the portfolio is large, such expected utility maximization problems become even harder to solve numerically. Therefore, analytical expressions for optimal portfolios are always preferred. In our work, we study portfolio optimization problems under the expected utility criterion for a wide range of utility functions, assuming return vectors follow hyperbolic distributions. Our main result demonstrates that under this setup, the two-fund monetary separation holds. Specifically, an individual with any utility function from this broad class will always choose to hold the same portfolio of risky assets, only adjusting the mix between this portfolio and a riskless asset based on their initial wealth and the specific utility function used for decision making. We provide explicit expressions for this mutual fund of risky assets. As a result, in our economic model, an individual's optimal portfolio is expressed in closed form as a linear combination of the riskless asset and the mutual fund of risky assets. Additionally, we discuss expected utility maximization problems under exponential utility functions over any domain of the portfolio set. In this part of our work, we show that the optimal portfolio in any given convex domain of the portfolio set either lies on the boundary of the domain or is the unique globally optimal portfolio within the entire domain.

Suggested Citation

  • Nuerxiati Abudurexiti & Erhan Bayraktar & Takaki Hayashi & Hasanjan Sayit, 2024. "Two-fund separation under hyperbolically distributed returns and concave utility function," Papers 2410.04459, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2410.04459
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.04459
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Zakamouline, Valeri & Koekebakker, Steen, 2009. "Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1242-1254, July.
    3. Michael W. Brandt & Pedro Santa‐Clara, 2006. "Dynamic Portfolio Selection by Augmenting the Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    4. B. Bouchard & N. Touzi & A. Zeghal, 2004. "Dual formulation of the utility maximization problem: the case of nonsmooth utility," Papers math/0405290, arXiv.org.
    5. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    6. Wenbo Hu & Alec Kercheval, 2010. "Portfolio optimization for student t and skewed t returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 91-105.
    7. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    8. Martin Hellmich & Stefan Kassberger, 2011. "Efficient and robust portfolio optimization in the multivariate Generalized Hyperbolic framework," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1503-1516.
    9. repec:dau:papers:123456789/1380 is not listed on IDEAS
    10. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    11. Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.
    12. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    13. repec:dau:papers:123456789/1531 is not listed on IDEAS
    14. Laurence Carassus & Mikl'os R'asonyi & Andrea M. Rodrigues, 2015. "Non-concave utility maximisation on the positive real axis in discrete time," Papers 1501.03123, arXiv.org, revised Apr 2015.
    15. Owen, Joel & Rabinovitch, Ramon, 1983. "On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
    16. Tina Hviid Rydberg, 1999. "Generalized Hyperbolic Diffusion Processes with Applications in Finance," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 183-201, April.
    17. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
    18. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    19. Çanakoglu, Ethem & Özekici, Süleyman, 2010. "Portfolio selection in stochastic markets with HARA utility functions," European Journal of Operational Research, Elsevier, vol. 201(2), pages 520-536, March.
    20. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    2. Mikl'os R'asonyi & Hasanjan Sayit, 2022. "Exponential utility maximization in small/large financial markets," Papers 2208.06549, arXiv.org, revised Jan 2025.
    3. Hasanjan Sayit, 2022. "A discussion of stochastic dominance and mean-risk optimal portfolio problems based on mean-variance-mixture models," Papers 2202.02488, arXiv.org, revised Jan 2025.
    4. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    5. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    6. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    7. Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.
    8. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    9. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.
    10. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    11. Dilip Madan, 2011. "Joint risk-neutral laws and hedging," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 840-850.
    12. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    13. Erdinc Akyildirim & Alper A. Hekimoglu & Ahmet Sensoy & Frank J. Fabozzi, 2023. "Extending the Merton model with applications to credit value adjustment," Annals of Operations Research, Springer, vol. 326(1), pages 27-65, July.
    14. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    15. Stergios B. Fotopoulos & Venkata K. Jandhyala & Alex Paparas, 2021. "Some Properties of the Multivariate Generalized Hyperbolic Laws," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 187-205, February.
    16. Trabs, Mathias, 2011. "Calibration of self-decomposable Lévy models," SFB 649 Discussion Papers 2011-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Thanakorn Nitithumbundit & Jennifer S. K. Chan, 2020. "ECM Algorithm for Auto-Regressive Multivariate Skewed Variance Gamma Model with Unbounded Density," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1169-1191, September.
    18. Gian Luca Tassinari & Corrado Corradi, 2013. "Pricing equity and debt tranches of collateralized funds of hedge fund obligations: An approach based on stochastic time change and Esscher-transformed martingale measure," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1991-2010, December.
    19. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    20. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.04459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.