IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.04459.html
   My bibliography  Save this paper

Two-fund separation under hyperbolically distributed returns and concave utility function

Author

Listed:
  • Nuerxiati Abudurexiti
  • Erhan Bayraktar
  • Takaki Hayashi
  • Hasanjan Sayit

Abstract

Portfolio selection problems that optimize expected utility are usually difficult to solve. If the number of assets in the portfolio is large, such expected utility maximization problems become even harder to solve numerically. Therefore, analytical expressions for optimal portfolios are always preferred. In our work, we study portfolio optimization problems under the expected utility criterion for a wide range of utility functions, assuming return vectors follow hyperbolic distributions. Our main result demonstrates that under this setup, the two-fund monetary separation holds. Specifically, an individual with any utility function from this broad class will always choose to hold the same portfolio of risky assets, only adjusting the mix between this portfolio and a riskless asset based on their initial wealth and the specific utility function used for decision making. We provide explicit expressions for this mutual fund of risky assets. As a result, in our economic model, an individual's optimal portfolio is expressed in closed form as a linear combination of the riskless asset and the mutual fund of risky assets. Additionally, we discuss expected utility maximization problems under exponential utility functions over any domain of the portfolio set. In this part of our work, we show that the optimal portfolio in any given convex domain of the portfolio set either lies on the boundary of the domain or is the unique globally optimal portfolio within the entire domain.

Suggested Citation

  • Nuerxiati Abudurexiti & Erhan Bayraktar & Takaki Hayashi & Hasanjan Sayit, 2024. "Two-fund separation under hyperbolically distributed returns and concave utility function," Papers 2410.04459, arXiv.org.
  • Handle: RePEc:arx:papers:2410.04459
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.04459
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.04459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.