IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.11919.html
   My bibliography  Save this paper

Discrete time optimal investment under model uncertainty

Author

Listed:
  • Laurence Carassus
  • Massinissa Ferhoune

Abstract

We study a robust utility maximization problem in a general discrete-time frictionless market under quasi-sure no-arbitrage. The investor is assumed to have a random and concave utility function defined on the whole real-line. She also faces model ambiguity on her beliefs about the market, which is modeled through a set of priors. We prove the existence of an optimal investment strategy using only primal methods. For that we assume classical assumptions on the market and on the random utility function as asymptotic elasticity constraints. Most of our other assumptions are stated on a prior-by-prior basis and correspond to generally accepted assumptions in the literature on markets without ambiguity. We also propose a general setting including utility functions with benchmark for which our assumptions are easily checked.

Suggested Citation

  • Laurence Carassus & Massinissa Ferhoune, 2023. "Discrete time optimal investment under model uncertainty," Papers 2307.11919, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2307.11919
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.11919
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romain Blanchard & Laurence Carassus, 2019. "No-arbitrage with multiple-priors in discrete time," Papers 1904.08780, arXiv.org, revised Oct 2019.
    2. Ariel Neufeld & Mario Šikić, 2019. "Nonconcave robust optimization with discrete strategies under Knightian uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(2), pages 229-253, October.
    3. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    4. Ariel Neufeld & Mario Sikic, 2017. "Nonconcave Robust Optimization with Discrete Strategies under Knightian Uncertainty," Papers 1711.03875, arXiv.org, revised Apr 2019.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Romain Blanchard & Laurence Carassus, 2018. "Multiple-Priors Optimal Investment In Discrete Time For Unbounded Utility Function," Working Papers hal-01883787, HAL.
    7. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    8. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    9. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    10. Mikl'os R'asonyi & Andrea Meireles-Rodrigues, 2018. "On Utility Maximisation Under Model Uncertainty in Discrete-Time Markets," Papers 1801.06860, arXiv.org, revised Jul 2020.
    11. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    12. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    13. Marcel Nutz, 2013. "Utility Maximization under Model Uncertainty in Discrete Time," Papers 1307.3597, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurence Carassus & Massinissa Ferhoune, 2024. "Nonconcave Robust Utility Maximization under Projective Determinacy," Papers 2403.11824, arXiv.org.
    2. Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurence Carassus & Massinissa Ferhoune, 2024. "Nonconcave Robust Utility Maximization under Projective Determinacy," Papers 2403.11824, arXiv.org.
    2. Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.
    3. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    4. Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.
    5. Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
    6. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    7. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    8. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2021. "Duality theory for robust utility maximisation," Finance and Stochastics, Springer, vol. 25(3), pages 469-503, July.
    9. Ariel Neufeld & Julian Sester & Mario Šikić, 2023. "Markov decision processes under model uncertainty," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 618-665, July.
    10. Romain Blanchard & Laurence Carassus, 2019. "No-arbitrage with multiple-priors in discrete time," Papers 1904.08780, arXiv.org, revised Oct 2019.
    11. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    12. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    13. Ariel Neufeld & Mario Šikić, 2019. "Nonconcave robust optimization with discrete strategies under Knightian uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(2), pages 229-253, October.
    14. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    15. Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.
    16. Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org.
    17. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    18. Laurence Carassus & Johannes Wiesel, 2023. "Strategies with minimal norm are optimal for expected utility maximization under high model ambiguity," Papers 2306.01503, arXiv.org, revised Jan 2024.
    19. Bartl, Daniel, 2020. "Conditional nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 785-805.
    20. Huy N. Chau & Miklos Rasonyi, 2018. "Robust utility maximization in markets with transaction costs," Papers 1803.04213, arXiv.org, revised Dec 2018.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.11919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.