IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v92y2021icp66-80.html
   My bibliography  Save this article

Arbitrage concepts under trading restrictions in discrete-time financial markets

Author

Listed:
  • Fontana, Claudio
  • Runggaldier, Wolfgang J.

Abstract

In a discrete-time setting, we study arbitrage concepts in the presence of convex trading constraints. We show that solvability of portfolio optimization problems is equivalent to absence of arbitrage of the first kind, a condition weaker than classical absence of arbitrage opportunities. We center our analysis on this characterization of market viability and derive versions of the fundamental theorems of asset pricing based on portfolio optimization arguments. By considering specifically a discrete-time setup, we simplify existing results and proofs that rely on semimartingale theory, thus allowing for a clear understanding of the foundational economic concepts involved. We exemplify these concepts, as well as some unexpected situations, in the context of one-period factor models with arbitrage opportunities under borrowing constraints.

Suggested Citation

  • Fontana, Claudio & Runggaldier, Wolfgang J., 2021. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 66-80.
  • Handle: RePEc:eee:mateco:v:92:y:2021:i:c:p:66-80
    DOI: 10.1016/j.jmateco.2020.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406820301087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2020.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Napp, C., 2003. "The Dalang-Morton-Willinger theorem under cone constraints," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 111-126, February.
    2. Mark Loewenstein & Gregory A. Willard, 2000. "Local martingales, arbitrage, and viability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(1), pages 135-161.
    3. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
    4. Igor V. Evstigneev & Klaus Schürger & Michael I. Taksar, 2004. "On The Fundamental Theorem Of Asset Pricing: Random Constraints And Bang‐Bang No‐Arbitrage Criteria," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 201-221, April.
    5. Oleksii Mostovyi, 2017. "Optimal Investment With Intermediate Consumption And Random Endowment," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 96-114, January.
    6. Julien Baptiste & Laurence Carassus & Emmanuel L'epinette, 2018. "Pricing without martingale measure," Papers 1807.04612, arXiv.org, revised May 2019.
    7. Claudio Fontana & Wolfgang J. Runggaldier, 2012. "Diffusion-based models for financial markets without martingale measures," Papers 1209.4449, arXiv.org, revised Feb 2013.
    8. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    9. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    10. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    11. Erhan Bayraktar & Zhou Zhou, 2017. "On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
    12. repec:dau:papers:123456789/5630 is not listed on IDEAS
    13. Ross, Stephen A, 1978. "A Simple Approach to the Valuation of Risky Streams," The Journal of Business, University of Chicago Press, vol. 51(3), pages 453-475, July.
    14. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    15. Elyégs Jouini & Hédi Kallal, 1995. "Arbitrage In Securities Markets With Short‐Sales Constraints," Mathematical Finance, Wiley Blackwell, vol. 5(3), pages 197-232, July.
    16. Helmut Elsinger & Martin Summer, 2001. "Arbitrage and Optimal Portfolio Choice with Financial Constraints," Working Papers 49, Oesterreichische Nationalbank (Austrian Central Bank).
    17. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    18. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    19. Dirk Becherer, 2001. "The numeraire portfolio for unbounded semimartingales," Finance and Stochastics, Springer, vol. 5(3), pages 327-341.
    20. Koehl, Pierre-F. & Pham, Huyen, 2000. "Sublinear price functionals under portfolio constraints," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 339-351, April.
    21. Bühlmann, Hans & Platen, Eckhard, 2003. "A Discrete Time Benchmark Approach for Insurance and Finance," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 153-172, November.
    22. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    23. Marcel Nutz, 2016. "Utility Maximization Under Model Uncertainty In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 252-268, April.
    24. Bertsekas, Dimitri P., 1974. "Necessary and sufficient conditions for existence of an optimal portfolio," Journal of Economic Theory, Elsevier, vol. 8(2), pages 235-247, June.
    25. Huy N. Chau & Andrea Cosso & Claudio Fontana & Oleksii Mostovyi, 2015. "Optimal investment with intermediate consumption under no unbounded profit with bounded risk," Papers 1509.01672, arXiv.org, revised Jun 2017.
    26. Pham, Huyen & Touzi, Nizar, 1999. "The fundamental theorem of asset pricing with cone constraints," Journal of Mathematical Economics, Elsevier, vol. 31(2), pages 265-279, March.
    27. Laurence Carassus & Huye^n Pham & Nizar Touzi, 2001. "No Arbitrage in Discrete Time Under Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 315-329, July.
    28. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    29. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    30. Ralf Korn & Manfred Schäl, 1999. "On value preserving and growth optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(2), pages 189-218, October.
    31. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    32. repec:dau:papers:123456789/5647 is not listed on IDEAS
    33. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurence Carassus & Emmanuel L'epinette, 2021. "Pricing without no-arbitrage condition in discrete time," Papers 2104.02688, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Fontana & Wolfgang J. Runggaldier, 2020. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Papers 2006.15563, arXiv.org, revised Sep 2020.
    2. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    3. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    4. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    5. Nuno Azevedo & Diogo Pinheiro & Stylianos Xanthopoulos & Athanasios Yannacopoulos, 2016. "Who would invest only in the risk-free asset?," Papers 1608.02446, arXiv.org.
    6. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    7. N. Azevedo & D. Pinheiro & S. Z. Xanthopoulos & A. N. Yannacopoulos, 2018. "Who would invest only in the risk-free asset?," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-14, September.
    8. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    9. repec:dau:papers:123456789/5374 is not listed on IDEAS
    10. Alet Roux, 2007. "The fundamental theorem of asset pricing under proportional transaction costs," Papers 0710.2758, arXiv.org.
    11. M. Dempster & I. Evstigneev & M. Taksar, 2006. "Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model," Annals of Finance, Springer, vol. 2(4), pages 327-355, October.
    12. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    13. Cerreia-Vioglio, S. & Maccheroni, F. & Marinacci, M., 2015. "Put–Call Parity and market frictions," Journal of Economic Theory, Elsevier, vol. 157(C), pages 730-762.
    14. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Robert Jarrow & Philip Protter & Sergio Pulido, 2015. "The Effect Of Trading Futures On Short Sale Constraints," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 311-338, April.
    16. Eckhard Platen, 2011. "A Benchmark Approach to Investing and Pricing," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 28, pages 409-426, World Scientific Publishing Co. Pte. Ltd..
    17. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    18. Jörn Sass & Manfred Schäl, 2014. "Numeraire portfolios and utility-based price systems under proportional transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 195-234, October.
    19. Jacopo Mancin & Wolfgang J. Runggaldier, 2015. "On the Existence of Martingale Measures in Jump Diffusion Market Models," Papers 1511.08349, arXiv.org.
    20. PInar, Mustafa Ç. & Salih, AslIhan & CamcI, Ahmet, 2010. "Expected gain-loss pricing and hedging of contingent claims in incomplete markets by linear programming," European Journal of Operational Research, Elsevier, vol. 201(3), pages 770-785, March.
    21. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:92:y:2021:i:c:p:66-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.