IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i11p6657-6688.html
   My bibliography  Save this article

No-arbitrage with multiple-priors in discrete time

Author

Listed:
  • Blanchard, Romain
  • Carassus, Laurence

Abstract

In a discrete time and multiple-priors setting, we propose a new characterisation of the condition of quasi-sure no-arbitrage which has become a standard assumption. We show that it is equivalent to the existence of a subclass of priors having the same polar sets as the initial class and such that the uni-prior no-arbitrage holds true for all priors in this subset. This characterisation shows that it is indeed a well-chosen condition being equivalent to several previously used alternative notions of no-arbitrage and allowing the proof of important results in mathematical finance. We also revisit the geometric and quantitative no-arbitrage conditions and explicit two important examples where all these concepts are illustrated.

Suggested Citation

  • Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:11:p:6657-6688
    DOI: 10.1016/j.spa.2020.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    2. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    3. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    4. Erhan Bayraktar & Yu-Jui Huang & Zhou Zhou, 2013. "On hedging American options under model uncertainty," Papers 1309.2982, arXiv.org, revised Apr 2015.
    5. Erhan Bayraktar & Zhou Zhou, 2017. "On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
    6. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2016. "Universal arbitrage aggregator in discrete-time markets under uncertainty," Finance and Stochastics, Springer, vol. 20(1), pages 1-50, January.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    9. Romain Blanchard & Laurence Carassus, 2018. "Multiple-Priors Optimal Investment In Discrete Time For Unbounded Utility Function," Working Papers hal-01883787, HAL.
    10. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    11. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Laurence Carassus & Miklós Rásonyi, 2015. "On Optimal Investment For A Behavioral Investor In Multiperiod Incomplete Market Models," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 115-153, January.
    13. Marcel Nutz, 2016. "Utility Maximization Under Model Uncertainty In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 252-268, April.
    14. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    15. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    16. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    17. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    18. Beatrice Acciaio & Mathias Beiglbock & Friedrich Penkner & Walter Schachermayer, 2013. "A model-free version of the fundamental theorem of asset pricing and the super-replication theorem," Papers 1301.5568, arXiv.org, revised Mar 2013.
    19. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2016. "Universal arbitrage aggregator in discrete-time markets under uncertainty," Finance and Stochastics, Springer, vol. 20(1), pages 1-50, January.
    20. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurence Carassus, 2021. "Quasi-sure essential supremum and applications to finance," Papers 2107.12862, arXiv.org, revised Mar 2024.
    2. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    3. Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
    4. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romain Blanchard & Laurence Carassus, 2019. "No-arbitrage with multiple-priors in discrete time," Papers 1904.08780, arXiv.org, revised Oct 2019.
    2. Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
    3. Laurence Carassus & Jan Obloj & Johannes Wiesel, 2018. "The robust superreplication problem: a dynamic approach," Papers 1812.11201, arXiv.org, revised Feb 2019.
    4. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    5. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    6. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    7. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    8. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    9. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    10. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    11. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    12. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    13. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    14. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    15. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    16. Fontana, Claudio & Runggaldier, Wolfgang J., 2021. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 66-80.
    17. Sergey Smirnov, 2019. "A Guaranteed Deterministic Approach to Superhedging—The Case of Convex Payoff Functions on Options," Mathematics, MDPI, vol. 7(12), pages 1-19, December.
    18. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    19. Romain Blanchard & Laurence Carassus, 2017. "Convergence of utility indifference prices to the superreplication price in a multiple-priors framework," Papers 1709.09465, arXiv.org, revised Oct 2020.
    20. Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:11:p:6657-6688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.