IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i1p149-175.html
   My bibliography  Save this article

On utility maximization under model uncertainty in discrete‐time markets

Author

Listed:
  • Miklós Rásonyi
  • Andrea Meireles‐Rodrigues

Abstract

We study the problem of maximizing terminal utility for an agent facing model uncertainty, in a frictionless discrete‐time market with one safe asset and finitely many risky assets. We show that an optimal investment strategy exists if the utility function, defined either on the positive real line or on the whole real line, is bounded from above. We further find that the boundedness assumption can be dropped, provided that we impose suitable integrability conditions, related to some strengthened form of no‐arbitrage. These results are obtained in an alternative framework for model uncertainty, where all possible dynamics of the stock prices are represented by a collection of stochastic processes on the same filtered probability space, rather than by a family of probability measures.

Suggested Citation

  • Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:1:p:149-175
    DOI: 10.1111/mafi.12284
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12284
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, May.
    2. Schachermayer, W., 1992. "A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 11(4), pages 249-257, December.
    3. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2016. "Universal arbitrage aggregator in discrete-time markets under uncertainty," Finance and Stochastics, Springer, vol. 20(1), pages 1-50, January.
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Miklós Rásonyi & Andrea Rodrigues, 2013. "Optimal portfolio choice for a behavioural investor in continuous-time markets," Annals of Finance, Springer, vol. 9(2), pages 291-318, May.
    6. Epstein, Larry G. & Ji, Shaolin, 2014. "Ambiguous volatility, possibility and utility in continuous time," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 269-282.
    7. Marcel Nutz, 2016. "Utility Maximization Under Model Uncertainty In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 252-268, April.
    8. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    9. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    10. Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.
    11. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    12. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    13. Romain Blanchard & Laurence Carassus, 2018. "Multiple-Priors Optimal Investment In Discrete Time For Unbounded Utility Function," Working Papers hal-01883787, HAL.
    14. Alexander Schied, 2005. "Optimal Investments for Robust Utility Functionals in Complete Market Models," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 750-764, August.
    15. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    16. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    17. Miklos Rasonyi & Lukasz Stettner, 2005. "On utility maximization in discrete-time financial market models," Papers math/0505243, arXiv.org.
    18. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    19. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    20. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2016. "Universal arbitrage aggregator in discrete-time markets under uncertainty," Finance and Stochastics, Springer, vol. 20(1), pages 1-50, January.
    21. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    22. Laurence Carassus & Miklós Rásonyi, 2016. "Maximization of Nonconcave Utility Functions in Discrete-Time Financial Market Models," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 146-173, February.
    23. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    24. Yan Dolinsky & Halil Mete Soner, 2013. "Martingale Optimal Transport and Robust Hedging in Continuous Time," Swiss Finance Institute Research Paper Series 13-13, Swiss Finance Institute.
    25. Miklos Rasonyi & Andrea M. Rodrigues, 2012. "Optimal Portfolio Choice for a Behavioural Investor in Continuous-Time Markets," Papers 1202.0628, arXiv.org, revised Apr 2013.
    26. Laurence Carassus & Miklós Rásonyi, 2007. "Optimal Strategies and Utility-Based Prices Converge When Agents’ Preferences Do," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 102-117, February.
    27. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    28. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Czichowsky & Raphael Huwyler, 2022. "Robust utility maximisation under proportional transaction costs for c\`adl\`ag price processes," Papers 2211.00532, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
    2. Mikl'os R'asonyi & Andrea Meireles-Rodrigues, 2018. "On Utility Maximisation Under Model Uncertainty in Discrete-Time Markets," Papers 1801.06860, arXiv.org, revised Jul 2020.
    3. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    4. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    5. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    6. Laurence Carassus & Massinissa Ferhoune, 2024. "Nonconcave Robust Utility Maximization under Projective Determinacy," Papers 2403.11824, arXiv.org.
    7. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    8. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    9. Romain Blanchard & Laurence Carassus, 2017. "Convergence of utility indifference prices to the superreplication price in a multiple-priors framework," Papers 1709.09465, arXiv.org, revised Oct 2020.
    10. Romain Blanchard & Laurence Carassus, 2019. "No-arbitrage with multiple-priors in discrete time," Papers 1904.08780, arXiv.org, revised Oct 2019.
    11. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    12. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    13. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    14. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    15. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    16. Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
    17. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    18. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    19. Alessandro Doldi & Marco Frittelli & Emanuela Rosazza Gianin, 2024. "On entropy martingale optimal transport theory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 1-42, June.
    20. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:1:p:149-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.