IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00992707.html
   My bibliography  Save this paper

On tail dependence coefficients of transformed multivariate Archimedean copulas

Author

Listed:
  • Elena Di Bernardino

    (CEDRIC - Centre d'études et de recherche en informatique et communications - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - CNAM - Conservatoire National des Arts et Métiers [CNAM])

  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

This paper presents the impact of a class of transformations of copulas in their upper and lower multivariate tail dependence coefficients. In particular we focus on multivariate Archimedean copulas. In the first part of this paper, we calculate multivariate tail dependence coefficients when the generator of the considered copula exhibits some regular variation properties, and we investigate the behaviour of these coefficients in cases that are close to tail independence. This first part exploits previous works of Charpentier and Segers (2009) and extends some results of Juri and Wüthrich (2003) and De Luca and Rivieccio (2012). We also introduce a new Regular Index Function (RIF) exhibiting some interesting properties. In the second part of the paper we analyse the impact in the upper and lower multivariate tail dependence coefficients of a large class of transformations of dependence structures. These results are based on the transformations exploited by Di Bernardino and Rullière (2013). We extend some bivariate results of Durante et al. (2010) in a multivariate setting by calculating multivariate tail dependence coefficients for transformed copulas. We obtain new results under specific conditions involving regularly varying hazard rates of components of the transformation. In the third part, we show the utility of using transformed Archimedean copulas, as they permit to build Archimedean generators exhibiting any chosen couple of lower and upper tail dependence coefficients. The interest of such study is also illustrated through applications in bivariate settings. At last, we explain possible applications with Markov chains with specific dependence structure.

Suggested Citation

  • Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
  • Handle: RePEc:hal:journl:hal-00992707
    DOI: 10.1016/j.fss.2015.08.030
    Note: View the original document on HAL open archive server: https://hal.science/hal-00992707v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00992707v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.fss.2015.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    2. Frederik Michiels & Ann De Schepper, 2012. "How to improve the fit of Archimedean copulas by means of transforms," Statistical Papers, Springer, vol. 53(2), pages 345-355, May.
    3. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    4. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    5. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    6. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodri­guez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2008. "On the construction of copulas and quasi-copulas with given diagonal sections," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 473-483, April.
    7. Fabrizio Durante & Carlo Sempi, 2005. "Copula and semicopula transforms," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2005, pages 1-11, January.
    8. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    9. Christian Genest & Kilani Ghoudi & Louis-Paul Rivest, 1998. "“Understanding Relationships Using Copulas,” by Edward Frees and Emiliano Valdez, January 1998," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(3), pages 143-149.
    10. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    11. Di Bernardino, Elena & Rullière, Didier, 2013. "Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 190-205.
    12. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    13. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    14. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    15. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    16. Valdez, Emiliano A., 2009. "On the Distortion of a Copula and its Margins," MPRA Paper 20524, University Library of Munich, Germany.
    17. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    18. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    19. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    20. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    21. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    22. Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
    23. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    24. Jadran Dobric & Friedrich Schmid, 2005. "Nonparametric estimation of the lower tail dependence λL in bivariate copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(4), pages 387-407.
    25. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    26. Patricia Mariela Morillas, 2005. "A method to obtain new copulas from a given one," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(2), pages 169-184, April.
    27. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    28. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
    29. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    30. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    2. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    3. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    2. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    3. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    4. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    5. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    6. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    7. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    8. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    9. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    10. Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.
    11. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    12. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    13. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    14. Durante Fabrizio & Fernández-Sánchez Juan & Trutschnig Wolfgang, 2014. "Solution to an open problem about a transformation on the space of copulas," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, November.
    15. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    16. Fadal A.A. Aldhufairi & Jungsywan H. Sepanski, 2020. "New families of bivariate copulas via unit weibull distortion," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-20, December.
    17. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    18. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    19. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.

    More about this item

    Keywords

    Archimedean copulas; tail dependence coefficients; regular variation; transformations of Archimedean copulas.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00992707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.