IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v99y2021icp79-91.html
   My bibliography  Save this article

Right-truncated Archimedean and related copulas

Author

Listed:
  • Hofert, Marius

Abstract

The copulas of random vectors with standard uniform univariate margins truncated from the right are considered and a general formula for such right-truncated conditional copulas is derived. This formula is analytical for copulas that can be inverted analytically as functions of each single argument. This is the case for Archimedean and related copulas. The resulting right-truncated Archimedean copulas are not only analytically tractable but can also be characterized as tilted Archimedean copulas, one of the main contributions of this work. This characterization now allows one to not only immediately obtain a limiting Clayton copula for a general vector of truncation points converging to zero (an extension of a result known in the special case of equal truncation points), but to work with an exact model instead of an approximate limiting model in the first place. As tilted Archimedean copulas have been studied in the literature, the characterization allows one to obtain various analytical and stochastic properties of right-truncated Archimedean copulas. Further contributions include the characterization of right-truncated Archimax copulas with logistic stable tail dependence functions as tilted outer power Archimedean copulas, and an analytical form of right-truncated nested Archimedean copulas.

Suggested Citation

  • Hofert, Marius, 2021. "Right-truncated Archimedean and related copulas," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 79-91.
  • Handle: RePEc:eee:insuma:v:99:y:2021:i:c:p:79-91
    DOI: 10.1016/j.insmatheco.2021.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721000421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Marius Hofert & Matthias Scherer, 2011. "CDO pricing with nested Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 775-787.
    3. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    4. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    5. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    6. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    7. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    8. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    9. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    10. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    11. A. W. Kemp, 1981. "Efficient Generation of Logarithmically Distributed Pseudo‐Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(3), pages 249-253, November.
    12. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    13. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    2. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    3. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    4. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    5. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    6. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.
    9. Antonov I. N. & Knyazev A. G. & Lepekhin O. A., 2016. "Copula Models of the Joint Distribution of Exchange Rates," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 16(4), pages 20-38.
    10. Durante Fabrizio & Sánchez Juan Fernández & Sempi Carlo, 2018. "A note on bivariate Archimax copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 178-182, October.
    11. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    12. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    14. André Neumann & Thorsten Dickhaus, 2020. "Nonparametric Archimedean generator estimation with implications for multiple testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 309-323, June.
    15. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    16. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    17. Quessy, Jean-François & Bahraoui, Tarik, 2014. "Weak convergence of empirical and bootstrapped C-power processes and application to copula goodness-of-fit," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 16-36.
    18. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    19. Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Working Papers hal-01147778, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:99:y:2021:i:c:p:79-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.