IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v23y2017i7p1419-1436.html
   My bibliography  Save this article

Analysis of tourism demand serial dependence structure for forecasting

Author

Listed:
  • Liang Zhu

    (Nanyang Technological University, Singapore)

  • Christine Lim

    (Nanyang Technological University, Singapore)

  • Wenjun Xie

    (Nanyang Technological University, Singapore)

  • Yuan Wu

    (Nanyang Technological University, Singapore)

Abstract

This study aims to extend knowledge of serial dependence structure in tourism demand modelling and make a contribution to tourism forecasting with the use of copula method. Analysis of serial dependence can reveal the impact of current tourism demand on the future. This is important for tourism demand forecasting, as the prediction of future tourism demand relies highly on the historical demand information. However, serial dependence, especially its structure, has received very little attention in previous tourism research. The copula method is flexible as it provides various functions to specify different serial dependence structures and allows arbitrary distributions of tourism demand. We used five types of copulas to analyse two-dimensional serial dependence structure for 10 arrivals series to Singapore. The empirical findings show that serial dependence structures of arrivals can be non-linear. Additionally, the Student- t copula generates forecasts of tourism demand with higher accuracy than the autoregressive integrated moving average (ARIMA) and seasonal ARIMA models.

Suggested Citation

  • Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
  • Handle: RePEc:sae:toueco:v:23:y:2017:i:7:p:1419-1436
    DOI: 10.1177/1354816617693964
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1354816617693964
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1354816617693964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. Ibragimov, Rustam, 2009. "Copula-Based Characterizations For Higher Order Markov Processes," Econometric Theory, Cambridge University Press, vol. 25(3), pages 819-846, June.
    5. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    6. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.
    7. Anna Serena Vergori, 2012. "Forecasting Tourism Demand: The Role of Seasonality," Tourism Economics, , vol. 18(5), pages 915-930, October.
    8. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    9. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    10. Hauke Jan & Kossowski Tomasz, 2011. "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data," Quaestiones Geographicae, Sciendo, vol. 30(2), pages 87-93, June.
    11. Christine Lim & Michael McAleer, 2000. "A seasonal analysis of Asian tourist arrivals to Australia," Applied Economics, Taylor & Francis Journals, vol. 32(4), pages 499-509.
    12. K.B. Nowman & S. Van Dellen, 2012. "Forecasting Overseas Visitors to the UK Using Continuous Time and Autoregressive Fractional Integrated Moving Average Models with Discrete Data," Tourism Economics, , vol. 18(4), pages 835-844, August.
    13. Sen Cheong Kon & Lindsay W. Turner, 2005. "Neural Network Forecasting of Tourism Demand," Tourism Economics, , vol. 11(3), pages 301-328, September.
    14. Pérez-Rodríguez, Jorge V. & Ledesma-Rodríguez, Francisco & Santana-Gallego, María, 2015. "Testing dependence between GDP and tourism's growth rates," Tourism Management, Elsevier, vol. 48(C), pages 268-282.
    15. Andreas Papatheodorou & Haiyan Song, 2005. "International Tourism Forecasts: Time-Series Analysis of World and Regional Data," Tourism Economics, , vol. 11(1), pages 11-23, March.
    16. Lindsay W. Turner & N. Kulendran & V. Pergat, 1995. "Forecasting New Zealand Tourism Demand with Disaggregated Data," Tourism Economics, , vol. 1(1), pages 51-69, March.
    17. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    18. Smith, Michael & Min, Aleksey & Almeida, Carlos & Czado, Claudia, 2010. "Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1467-1479.
    19. Jae H. Kim & Monique T. Ngo, 2001. "Modelling and Forecasting Monthly Airline Passenger Flows among Three Major Australian Cities," Tourism Economics, , vol. 7(4), pages 397-412, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Yuan Lin & Mateus Lee, 2020. "Taiwan’s opening policy to Chinese tourists and cross-strait relations: The impacts on inbound tourism into Taiwan," Tourism Economics, , vol. 26(1), pages 27-44, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    2. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    3. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    4. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    5. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    6. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    7. Martin Bladt & Alexander J. McNeil, 2020. "Time series copula models using d-vines and v-transforms," Papers 2006.11088, arXiv.org, revised Jul 2021.
    8. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    9. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    10. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    11. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    12. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    13. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    14. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    15. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    16. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
    17. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    18. Overbeck Ludger & Schmidt Wolfgang M., 2015. "Multivariate Markov Families of Copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, October.
    19. Fermanian, Jean-David & Wegkamp, Marten H., 2012. "Time-dependent copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 19-29.
    20. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:23:y:2017:i:7:p:1419-1436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.