IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00625355.html
   My bibliography  Save this paper

New axiomatizations of the Shapley interaction index for bi-capacities

Author

Listed:
  • Fabien Lange

    (Keleti Faculty of Economics - Budapest Tech)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Bi-capacities are a natural generalization of capacities (or fuzzy measures) in a context of decision making where underlying scales are bipolar. They are able to capture a wide variety of decision behaviours. After a short presentation of the basis structure, we introduce the Shapley value and the interaction index for capacities. Afterwards, the case of bi-capacities is studied with new axiomatizations of the interaction index.

Suggested Citation

  • Fabien Lange & Michel Grabisch, 2011. "New axiomatizations of the Shapley interaction index for bi-capacities," Post-Print hal-00625355, HAL.
  • Handle: RePEc:hal:journl:hal-00625355
    Note: View the original document on HAL open archive server: https://hal.science/hal-00625355
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00625355/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christophe Labreuche & Michel Grabisch, 2006. "Axiomatisation of the Shapley value and power index for bi-cooperative games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00113340, HAL.
    2. Fujimoto, Katsushige & Kojadinovic, Ivan & Marichal, Jean-Luc, 2006. "Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices," Games and Economic Behavior, Elsevier, vol. 55(1), pages 72-99, April.
    3. Marc Roubens & Michel Grabisch, 1999. "An axiomatic approach to the concept of interaction among players in cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 547-565.
    4. J. Bilbao & J. Fernández & N. Jiménez & J. López, 2008. "The Shapley value for bicooperative games," Annals of Operations Research, Springer, vol. 158(1), pages 99-115, February.
    5. Kojadinovic, Ivan, 2007. "A weight-based approach to the measurement of the interaction among criteria in the framework of aggregation by the bipolar Choquet integral," European Journal of Operational Research, Elsevier, vol. 179(2), pages 498-517, June.
    6. Jesús Mario Bilbao & Julio R. Fernández & Nieves Jiménez & Jorge Jesús López, 2004. "The Shapley value for bicooperative games," Economic Working Papers at Centro de Estudios Andaluces E2004/56, Centro de Estudios Andaluces.
    7. MoshÊ Machover & Dan S. Felsenthal, 1997. "Ternary Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(3), pages 335-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    2. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    3. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    4. Mihai Daniel Roman & Diana Mihaela Stanculescu, 2021. "An Analysis of Countries’ Bargaining Power Derived from the Natural Gas Transportation System Using a Cooperative Game Theory Model," Energies, MDPI, vol. 14(12), pages 1-13, June.
    5. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    6. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "Influence functions, followers and command games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 123-138, May.
    7. García-Martínez, Jose A. & Mayor-Serra, Antonio J. & Meca, Ana, 2020. "Efficient Effort Equilibrium in Cooperation with Pairwise Cost Reduction," MPRA Paper 105604, University Library of Munich, Germany.
    8. Mustapha Ridaoui & Michel Grabisch & Christophe Labreuche, 2018. "An axiomatisation of the Banzhaf value and interaction index for multichoice games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381119, HAL.
    9. Rodrigue Tido Takeng & Arnold Cedrick Soh Voutsa & Kévin Fourrey, 2023. "Decompositions of inequality measures from the perspective of the Shapley–Owen value," Theory and Decision, Springer, vol. 94(2), pages 299-331, February.
    10. Michel Grabisch & Christophe Labreuche, 2016. "Fuzzy Measures and Integrals in MCDA," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 553-603, Springer.
    11. Sébastien Courtin & Rodrigue Tido Takeng & Frédéric Chantreuil, 2020. "Decomposition of interaction indices: alternative interpretations of cardinal-probabilistic interaction indices ," Working Papers hal-02952516, HAL.
    12. Marichal, Jean-Luc & Mathonet, Pierre, 2011. "Weighted Banzhaf power and interaction indexes through weighted approximations of games," European Journal of Operational Research, Elsevier, vol. 211(2), pages 352-358, June.
    13. Bilbao, J.M. & Jiménez, N. & López, J.J., 2010. "The selectope for bicooperative games," European Journal of Operational Research, Elsevier, vol. 204(3), pages 522-532, August.
    14. Kojadinovic, Ivan, 2007. "A weight-based approach to the measurement of the interaction among criteria in the framework of aggregation by the bipolar Choquet integral," European Journal of Operational Research, Elsevier, vol. 179(2), pages 498-517, June.
    15. Labreuche, Christophe, 2011. "Interaction indices for games on combinatorial structures with forbidden coalitions," European Journal of Operational Research, Elsevier, vol. 214(1), pages 99-108, October.
    16. Sébastien Courtin & Rodrigue Tido Takeng & Frédéric Chantreuil, 2024. "Decomposition of interaction indices: alternative interpretations of cardinal–probabilistic interaction indices," Theory and Decision, Springer, vol. 97(1), pages 139-165, August.
    17. Ramón Flores & Elisenda Molina & Juan Tejada, 2019. "Evaluating groups with the generalized Shapley value," 4OR, Springer, vol. 17(2), pages 141-172, June.
    18. Christophe Labreuche & Michel Grabisch, 2008. "A value for bi-cooperative games," Post-Print halshs-00308738, HAL.
    19. Borgonovo, Emanuele & Plischke, Elmar & Rabitti, Giovanni, 2024. "The many Shapley values for explainable artificial intelligence: A sensitivity analysis perspective," European Journal of Operational Research, Elsevier, vol. 318(3), pages 911-926.
    20. Ulrich Faigle & Michel Grabisch, 2017. "Game Theoretic Interaction and Decision: A Quantum Analysis," Games, MDPI, vol. 8(4), pages 1-25, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00625355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.