IDEAS home Printed from https://ideas.repec.org/p/cea/doctra/e2004_56.html
   My bibliography  Save this paper

The Shapley value for bicooperative games

Author

Abstract

The aim of the present paper is to study a one-point solution concept for bicooperative games. For these games introduced by Bilbao (2000), we define a one-point solution called the Shapley value, since this value can be interpreted in a similar way to the classical Shapley value for cooperative games. The main result of the paper is an axiomatic characterization of this value.

Suggested Citation

  • Jesús Mario Bilbao & Julio R. Fernández & Nieves Jiménez & Jorge Jesús López, 2004. "The Shapley value for bicooperative games," Economic Working Papers at Centro de Estudios Andaluces E2004/56, Centro de Estudios Andaluces.
  • Handle: RePEc:cea:doctra:e2004_56
    as

    Download full text from publisher

    File URL: http://public.centrodeestudiosandaluces.es/pdfs/E200456.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesús Mario Bilbao & Julio R. Fernández & Nieves Jiménez & Jorge Jesús López, 2004. "Probabilistic values for bicooperative games," Economic Working Papers at Centro de Estudios Andaluces E2004/54, Centro de Estudios Andaluces.
    2. Robert J. Weber, 1977. "Probabilistic Values for Games," Cowles Foundation Discussion Papers 471R, Cowles Foundation for Research in Economics, Yale University.
    3. MoshÊ Machover & Dan S. Felsenthal, 1997. "Ternary Voting Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(3), pages 335-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René Brink, 2012. "On hierarchies and communication," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 721-735, October.
    2. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.
    3. René van den Brink & Simin He & Jia-Ping Huang, 2015. "Polluted River Problems and Games with a Permission Structure," Tinbergen Institute Discussion Papers 15-108/II, Tinbergen Institute.
    4. Navarro, Florian, 2020. "The center value: A sharing rule for cooperative games on acyclic graphs," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 1-13.
    5. C. Manuel & E. González-Arangüena & R. Brink, 2013. "Players indifferent to cooperate and characterizations of the Shapley value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 1-14, February.
    6. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    7. Mihai Daniel Roman & Diana Mihaela Stanculescu, 2021. "An Analysis of Countries’ Bargaining Power Derived from the Natural Gas Transportation System Using a Cooperative Game Theory Model," Energies, MDPI, vol. 14(12), pages 1-13, June.
    8. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2020. "Some Properties for Bisemivalues on Bicooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 270-288, April.
    9. Selcuk, O. & Talman, A.J.J., 2013. "Games With General Coalitional Structure," Other publications TiSEM 8d356e38-cdce-41e0-b3dd-a, Tilburg University, School of Economics and Management.
    10. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    11. Encarnacion Algaba & René van den Brink & Chris Dietz, 2015. "Power Measures and Solutions for Games under Precedence Constraints," Tinbergen Institute Discussion Papers 15-007/II, Tinbergen Institute.
    12. Fabien Lange & Michel Grabisch, 2011. "New axiomatizations of the Shapley interaction index for bi-capacities," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00625355, HAL.
    13. García-Martínez, Jose A. & Mayor-Serra, Antonio J. & Meca, Ana, 2020. "Efficient Effort Equilibrium in Cooperation with Pairwise Cost Reduction," MPRA Paper 105604, University Library of Munich, Germany.
    14. Encarnación Algaba & Rene van den Brink & Chris Dietz, 2013. "Cooperative Games on Accessible Union Stable Systems," Tinbergen Institute Discussion Papers 13-207/II, Tinbergen Institute.
    15. Bilbao, J.M. & Jiménez, N. & López, J.J., 2010. "The selectope for bicooperative games," European Journal of Operational Research, Elsevier, vol. 204(3), pages 522-532, August.
    16. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    17. Selcuk, O. & Talman, A.J.J., 2013. "Games With General Coalitional Structure," Discussion Paper 2013-002, Tilburg University, Center for Economic Research.
    18. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Mario Bilbao & Julio R. Fernández & Nieves Jiménez & Jorge Jesús López, 2004. "Probabilistic values for bicooperative games," Economic Working Papers at Centro de Estudios Andaluces E2004/54, Centro de Estudios Andaluces.
    2. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "Influence functions, followers and command games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 123-138, May.
    3. Moulin, Herve & Vohra, Rakesh, 2003. "Characterization of additive cost sharing methods," Economics Letters, Elsevier, vol. 80(3), pages 399-407, September.
    4. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
    5. Michel Grabisch & Agnieszka Rusinowska, 2010. "A model of influence with an ordered set of possible actions," Theory and Decision, Springer, vol. 69(4), pages 635-656, October.
    6. René Brink & Frank Steffen, 2012. "Axiomatizations of a positional power score and measure for hierarchies," Public Choice, Springer, vol. 151(3), pages 757-787, June.
    7. Michel Grabisch & Agnieszka Rusinowska, 2008. "Measuring influence among players with an ordered set of possible actions," Working Papers 0801, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    8. Gilboa, Itzhak & Monderer, Dov, 1991. "Quasi-values on Subspaces," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 353-363.
    9. Rodica Branzei & Dinko Dimitrov & Stef Tijs, 2008. "Convex Games Versus Clan Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 363-372.
    10. Michel Grabisch & Agnieszka Rusinowska, 2007. "Influence Indices," Post-Print halshs-00142479, HAL.
    11. Julien Reynaud & Fabien Lange & Łukasz Gątarek & Christian Thimann, 2011. "Proximity in Coalition Building," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 3(3), pages 111-132, September.
    12. Geoffroy de Clippel & Roberto Serrano, 2008. "Marginal Contributions and Externalities in the Value," Econometrica, Econometric Society, vol. 76(6), pages 1413-1436, November.
    13. Ines Lindner, 2008. "A Special Case of Penrose’s Limit Theorem When Abstention is Allowed," Theory and Decision, Springer, vol. 64(4), pages 495-518, June.
    14. J. Bilbao & J. Fernández & N. Jiménez & J. López, 2008. "The Shapley value for bicooperative games," Annals of Operations Research, Springer, vol. 158(1), pages 99-115, February.
    15. Grabisch, Michel & Rusinowska, Agnieszka, 2011. "A model of influence with a continuum of actions," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 576-587.
    16. Moulin, Herve, 2002. "Axiomatic cost and surplus sharing," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 6, pages 289-357, Elsevier.
    17. Alaitz Artabe & Annick Laruelle & Federico Valenciano, 2012. "Preferences, actions and voting rules," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(1), pages 15-28, March.
      • Artabe Echevarria, Alaitz & Laruelle, Annick & Valenciano Llovera, Federico, 2011. "Preferences, actions and voting rules," IKERLANAK info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    18. Hellman, Ziv & Peretz, Ron, 2018. "Values for cooperative games over graphs and games with inadmissible coalitions," Games and Economic Behavior, Elsevier, vol. 108(C), pages 22-36.
    19. Ziv Hellman & Ron Peretz, 2015. "Values for Cooperative Games over Graphs and Games With Inadmissible Coalitions," Working Papers 2015-04, Bar-Ilan University, Department of Economics.
    20. Eric Friedman, 1997. "Weak and Strong Consistency in Additive Cost Sharing," Departmental Working Papers 199707, Rutgers University, Department of Economics.

    More about this item

    Keywords

    Bicooperative games; Shapley value.;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cea:doctra:e2004_56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susana Mérida (email available below). General contact details of provider: https://edirc.repec.org/data/fcanges.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.