IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00179830.html
   My bibliography  Save this paper

Capacities and Games on Lattices: A Survey of Result

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We provide a survey of recent developments about capacities (or fuzzy measures) and ccoperative games in characteristic form, when they are defined on more general structures than the usual power set of the universal set, namely lattices. In a first part, we give various possible interpretations and applications of these general concepts, and then we elaborate about the possible definitions of usual tools in these theories, such as the Choquet integral, the Möbius transform, and the Shapley value.

Suggested Citation

  • Michel Grabisch, 2006. "Capacities and Games on Lattices: A Survey of Result," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00179830, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00179830
    DOI: 10.1142/S0218488506004084
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00179830
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00179830/document
    Download Restriction: no

    File URL: https://libkey.io/10.1142/S0218488506004084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rodica Branzei & Dinko Dimitrov & Stef Tijs, 2008. "Models in Cooperative Game Theory," Springer Books, Springer, edition 0, number 978-3-540-77954-4, February.
    2. R. M. Thrall & W. F. Lucas, 1963. "N‐person games in partition function form," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 10(1), pages 281-298, March.
    3. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    4. Tijs, S.H. & Brânzei, R. & Ishihara, S. & Muto, S., 2004. "On cores and stable sets for fuzzy games," Other publications TiSEM 66dd20be-cb4b-4b6d-937e-0, Tilburg University, School of Economics and Management.
    5. Bilbao, J. M., 1998. "Axioms for the Shapley value on convex geometries," European Journal of Operational Research, Elsevier, vol. 110(2), pages 368-376, October.
    6. Gilboa, Itzhak & Lehrer, Ehud, 1991. "Global Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 129-147.
    7. Grabisch, Michel & Labreuche, Christophe & Vansnick, Jean-Claude, 2003. "On the extension of pseudo-Boolean functions for the aggregation of interacting criteria," European Journal of Operational Research, Elsevier, vol. 148(1), pages 28-47, July.
    8. Bilbao, J. M. & Lebron, E. & Jimenez, N., 1999. "The core of games on convex geometries," European Journal of Operational Research, Elsevier, vol. 119(2), pages 365-372, December.
    9. Marichal, Jean-Luc, 2002. "Entropy of discrete Choquet capacities," European Journal of Operational Research, Elsevier, vol. 137(3), pages 612-624, March.
    10. Christophe Labreuche & Michel Grabisch, 2003. "The Choquet integral for the aggregation of interval scales in multicriteria decision making," Post-Print hal-00272090, HAL.
    11. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    12. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    13. Jean-Pierre Aubin, 1981. "Cooperative Fuzzy Games," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    2. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    3. repec:hal:pseose:hal-00803233 is not listed on IDEAS
    4. Gerwald Gulick & Henk Norde, 2013. "Fuzzy cores and fuzzy balancedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 131-146, April.
    5. Grabisch, Michel & Sudhölter, Peter, 2014. "On the restricted cores and the bounded core of games on distributive lattices," European Journal of Operational Research, Elsevier, vol. 235(3), pages 709-717.
    6. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Post-Print halshs-00445132, HAL.
    7. Faigle, U. & Grabisch, M. & Heyne, M., 2010. "Monge extensions of cooperation and communication structures," European Journal of Operational Research, Elsevier, vol. 206(1), pages 104-110, October.
    8. Michel Grabisch & Lijue Xie, 2011. "The restricted core of games on distributive lattices: how to share benefits in a hierarchy," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 189-208, April.
    9. Michel Grabisch & Lijue Xie, 2008. "The core of games on distributive lattices: how to share benefits in a hierarchy," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00344802, HAL.
    10. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    11. van Gulick, G. & Norde, H.W., 2011. "Fuzzy Cores and Fuzzy Balancedness," Other publications TiSEM 5792b50b-8b99-46dd-bba5-4, Tilburg University, School of Economics and Management.
    12. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    13. Miranda, P. & Grabisch, M. & Gil, P., 2005. "Axiomatic structure of k-additive capacities," Mathematical Social Sciences, Elsevier, vol. 49(2), pages 153-178, March.
    14. Kojadinovic, Ivan, 2007. "Minimum variance capacity identification," European Journal of Operational Research, Elsevier, vol. 177(1), pages 498-514, February.
    15. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2011. "A representation of preferences by the Choquet integral with respect to a 2-additive capacity," Theory and Decision, Springer, vol. 71(3), pages 297-324, September.
    16. Mikhail Timonin, 2012. "Maximization of the Choquet integral over a convex set and its application to resource allocation problems," Annals of Operations Research, Springer, vol. 196(1), pages 543-579, July.
    17. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    18. Tido Takeng, Rodrigue, 2022. "Uncertain production environment and communication structure," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    19. J. Bilbao & E. Lebrón & N. Jiménez, 2000. "Simple games on closure spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 43-55, June.
    20. Branzei, R. & Tijs, S. & Zarzuelo, J., 2009. "Convex multi-choice games: Characterizations and monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 198(2), pages 571-575, October.
    21. Michel Grabisch, 2011. "Ensuring the boundedness of the core of games with restricted cooperation," Annals of Operations Research, Springer, vol. 191(1), pages 137-154, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00179830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.