IDEAS home Printed from https://ideas.repec.org/p/fip/fedhwp/wp-07-17.html
   My bibliography  Save this paper

Technology’s edge: the educational benefits of computer-aided instruction

Author

Listed:
  • Lisa Barrow
  • Lisa Markham
  • Cecilia Elena Rouse

Abstract

Because a significant portion of U.S. students lacks critical mathematic skills, schools across the country are investing heavily in computerized curriculums as a way to enhance education output, even though there is surprisingly little evidence that they actually improve student achievement. In this paper we present results from a randomized study in three urban school districts of a well- defined use of computers in schools: a popular instructional computer program which is designed to teach pre-algebra and algebra. We assess the impact of the program using statewide tests that cover a range of math skills and tests designed specifically to target pre- algebra and algebra skills. We find that students randomly assigned to computer-aided instruction score at least 0.17 of a standard deviation higher on a pre- algebra/algebra test than students randomly assigned to traditional instruction. We hypothesize that the effectiveness arises from increased individualized instruction as the effects appear larger for students in larger classes and those in classes in which students are frequently absent.

Suggested Citation

  • Lisa Barrow & Lisa Markham & Cecilia Elena Rouse, 2007. "Technology’s edge: the educational benefits of computer-aided instruction," Working Paper Series WP-07-17, Federal Reserve Bank of Chicago.
  • Handle: RePEc:fip:fedhwp:wp-07-17
    as

    Download full text from publisher

    File URL: http://www.chicagofed.org/digital_assets/publications/working_papers/2007/wp2007_17.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Abhijit V. Banerjee & Shawn Cole & Esther Duflo & Leigh Linden, 2007. "Remedying Education: Evidence from Two Randomized Experiments in India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1235-1264.
    2. Figlio, David N. & Rouse, Cecilia Elena, 2006. "Do accountability and voucher threats improve low-performing schools?," Journal of Public Economics, Elsevier, vol. 90(1-2), pages 239-255, January.
    3. Austan Goolsbee & Jonathan Guryan, 2006. "The Impact of Internet Subsidies in Public Schools," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 336-347, May.
    4. Stephen Machin & Sandra McNally & Olmo Silva, 2007. "New Technology in Schools: Is There a Payoff?," Economic Journal, Royal Economic Society, vol. 117(522), pages 1145-1167, July.
    5. Joshua Angrist & Victor Lavy, 2002. "New Evidence on Classroom Computers and Pupil Learning," Economic Journal, Royal Economic Society, vol. 112(482), pages 735-765, October.
    6. Rouse, Cecilia Elena & Krueger, Alan B., 2004. "Putting computerized instruction to the test: a randomized evaluation of a "scientifically based" reading program," Economics of Education Review, Elsevier, vol. 23(4), pages 323-338, August.
    7. Grogger, Jeff, 1996. "Does School Quality Explain the Recent Black/White Wage Trend?," Journal of Labor Economics, University of Chicago Press, vol. 14(2), pages 231-253, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Bergman, 2020. "Nudging Technology Use: Descriptive and Experimental Evidence from School Information Systems," Education Finance and Policy, MIT Press, vol. 15(4), pages 623-647, Fall.
    2. Bulman, George & Fairlie, Robert W, 2015. "Technology and Education: Computers, Software, and the Internet," Santa Cruz Department of Economics, Working Paper Series qt5265z87t, Department of Economics, UC Santa Cruz.
    3. Bet, German & Cristia, Julián P. & Ibarrarán, Pablo, 2014. "The Effects of Shared School Technology Access on Students Digital Skills in Peru," IZA Discussion Papers 7954, Institute of Labor Economics (IZA).
    4. Karthik Muralidharan & Abhijeet Singh & Alejandro J. Ganimian, 2019. "Disrupting Education? Experimental Evidence on Technology-Aided Instruction in India," American Economic Review, American Economic Association, vol. 109(4), pages 1426-1460, April.
    5. Carrillo, Paul E. & Onofa, Mercedes & Ponce, Juan, 2010. "Information Technology and Student Achievement: Evidence from a Randomized Experiment in Ecuador," IDB Publications (Working Papers) 3094, Inter-American Development Bank.
    6. Aaron K. Chatterji, 2017. "Innovation and American K-12 Education," NBER Chapters, in: Innovation Policy and the Economy, Volume 18, pages 27-51, National Bureau of Economic Research, Inc.
    7. Rodrigo Belo & Pedro Ferreira & Rahul Telang, 2014. "Broadband in School: Impact on Student Performance," Management Science, INFORMS, vol. 60(2), pages 265-282, February.
    8. Comi, Simona Lorena & Argentin, Gianluca & Gui, Marco & Origo, Federica & Pagani, Laura, 2017. "Is it the way they use it? Teachers, ICT and student achievement," Economics of Education Review, Elsevier, vol. 56(C), pages 24-39.
    9. Peter Leopold S. Bergman, 2016. "Technology Adoption in Education: Usage, Spillovers and Student Achievement," CESifo Working Paper Series 6101, CESifo.
    10. Aaron Chatterji, 2017. "Innovation and American K-12 Education," NBER Working Papers 23531, National Bureau of Economic Research, Inc.
    11. Maresa Sprietsma, 2012. "Computers as pedagogical tools in Brazil: a pseudo-panel analysis," Education Economics, Taylor & Francis Journals, vol. 20(1), pages 19-32, November.
    12. Blimpo,Moussa Pouguinimpo & Gajigo,Ousman & Owusu,Solomon & Tomita,Ryoko & Xu,Yanbin, 2020. "Technology in the Classroom and Learning in Secondary Schools," Policy Research Working Paper Series 9288, The World Bank.
    13. Stephen Machin & Sandra McNally & Olmo Silva, 2007. "New Technology in Schools: Is There a Payoff?," Economic Journal, Royal Economic Society, vol. 117(522), pages 1145-1167, July.
    14. Nerea Gómez-Fernández & Mauro Mediavilla, 2018. "Do information and communication technologies (ICT) improve educational outcomes? Evidence for Spain in PISA 2015," Working Papers 2018/20, Institut d'Economia de Barcelona (IEB).
    15. Bergman, Peter & Rogers, Todd, 2017. "The Impact of Defaults on Technology Adoption, and Its Underappreciation by Pollicymakers," Working Paper Series rwp17-021, Harvard University, John F. Kennedy School of Government.
    16. Hall, Caroline & Lundin, Martin & Sibbmark, Kristina, 2019. "A laptop for every child? The impact of ICT on educational outcomes," Working Paper Series 2019:26, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    17. Cardim, Joana & Molina-Millán, Teresa & Vicente, Pedro C., 2023. "Can technology improve the classroom experience in primary education? An African experiment on a worldwide program," Journal of Development Economics, Elsevier, vol. 164(C).
    18. Schwerdt, Guido & Chingos, Matthew M., 2015. "Virtual Schooling and Student Learning: Evidence from the Florida Virtual School," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113202, Verein für Socialpolitik / German Economic Association.
    19. Patterson, Richard W. & Patterson, Robert M., 2017. "Computers and productivity: Evidence from laptop use in the college classroom," Economics of Education Review, Elsevier, vol. 57(C), pages 66-79.
    20. Catherine Rodríguez Orgales & Fabio Sánchez Torres & Juliana Márquez Zúñiga, 2011. "Impacto del Programa Computadores para Educar" en la deserción estudiantil, el logro escolar y el ingreso a la educación superior"," Documentos CEDE 8744, Universidad de los Andes, Facultad de Economía, CEDE.

    More about this item

    Keywords

    Computer-assisted instruction; Technology;

    JEL classification:

    • I2 - Health, Education, and Welfare - - Education
    • J0 - Labor and Demographic Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedhwp:wp-07-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauren Wiese (email available below). General contact details of provider: https://edirc.repec.org/data/frbchus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.