Financial Conditions and Economic Activity: Insights from Machine Learning
Author
Abstract
Suggested Citation
DOI: 10.17016/FEDS.2020.095
Download full text from publisher
References listed on IDEAS
- Aikman, David & Kiley, Michael & Lee, Seung Jung & Palumbo, Michael G. & Warusawitharana, Missaka, 2017.
"Mapping heat in the U.S. financial system,"
Journal of Banking & Finance, Elsevier, vol. 81(C), pages 36-64.
- David Aikman & Michael T. Kiley & Seung Jung Lee & Michael G. Palumbo & Missaka Warusawitharana, 2015. "Mapping Heat in the U.S. Financial System," Finance and Economics Discussion Series 2015-59, Board of Governors of the Federal Reserve System (U.S.).
- Boivin, Jean & Kiley, Michael T. & Mishkin, Frederic S., 2010.
"How Has the Monetary Transmission Mechanism Evolved Over Time?,"
Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 8, pages 369-422,
Elsevier.
- Jean Boivin & Michael T. Kiley & Frederic S. Mishkin, 2010. "How Has the Monetary Transmission Mechanism Evolved Over Time?," NBER Working Papers 15879, National Bureau of Economic Research, Inc.
- Jean Boivin & Michael T. Kiley & Frederic S. Mishkin, 2010. "How has the monetary transmission mechanism evolved over time?," Finance and Economics Discussion Series 2010-26, Board of Governors of the Federal Reserve System (U.S.).
- Stéphanie Guichard & David Haugh & David Turner, 2009. "Quantifying the Effect of Financial Conditions in the Euro Area, Japan, United Kingdom and United States," OECD Economics Department Working Papers 677, OECD Publishing.
- Holston, Kathryn & Laubach, Thomas & Williams, John C., 2017.
"Measuring the natural rate of interest: International trends and determinants,"
Journal of International Economics, Elsevier, vol. 108(S1), pages 59-75.
- Kathryn Holston & Thomas Laubach & John C. Williams, 2016. "Measuring the Natural Rate of Interest: International Trends and Determinants," NBER Chapters, in: NBER International Seminar on Macroeconomics 2016, National Bureau of Economic Research, Inc.
- Kathryn Holston & Thomas Laubach & John C. Williams, 2016. "Measuring the Natural Rate of Interest : International Trends and Determinants," Finance and Economics Discussion Series 2016-073, Board of Governors of the Federal Reserve System (U.S.).
- Kathryn Holston & Thomas Laubach & John C. Williams, 2016. "Measuring the Natural Rate of Interest: International Trends and Determinants," Working Paper Series 2016-11, Federal Reserve Bank of San Francisco.
- Michael T. Kiley, 2020.
"What Can the Data Tell Us about the Equilibrium Real Interest Rate?,"
International Journal of Central Banking, International Journal of Central Banking, vol. 16(3), pages 181-209, June.
- Michael T. Kiley, 2015. "What Can the Data Tell Us About the Equilibrium Real Interest Rate?," Finance and Economics Discussion Series 2015-77, Board of Governors of the Federal Reserve System (U.S.).
- Scott Brave & R. Andrew Butters, 2011. "Monitoring financial stability: a financial conditions index approach," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 35(Q I), pages 22-43.
- Lawrence J. Christiano & Terry J. Fitzgerald, 2003.
"The Band Pass Filter,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
- Lawrence J. Christiano & Terry J. Fitzgerald, 1999. "The Band pass filter," Working Papers (Old Series) 9906, Federal Reserve Bank of Cleveland.
- Lawrence J. Christiano & Terry J. Fitzgerald, 1999. "The Band Pass Filter," NBER Working Papers 7257, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "CFFILTER: RATS procedure to perform band pass filter using Christiano-Fitzgerald method," Statistical Software Components RTS00034, Boston College Department of Economics.
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Matheson, Troy D., 2012.
"Financial conditions indexes for the United States and euro area,"
Economics Letters, Elsevier, vol. 115(3), pages 441-446.
- Mr. Troy D Matheson, 2011. "Financial Conditions Indexes for the United States and Euro Area," IMF Working Papers 2011/093, International Monetary Fund.
- Koop, Gary & Korobilis, Dimitris, 2014.
"A new index of financial conditions,"
European Economic Review, Elsevier, vol. 71(C), pages 101-116.
- Gary Koop & Dimitris Korobilis, "undated". "A new index of financial conditions," Working Papers 2013_06, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis, 2013. "A new index of financial conditions," Working Papers 1307, University of Strathclyde Business School, Department of Economics.
- Gary, Koop & Dimitris, Korobilis, 2013. "A New Index of Financial Conditions," SIRE Discussion Papers 2013-48, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2013. "A New Index of Financial Conditions," MPRA Paper 45463, University Library of Munich, Germany.
- James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019.
"Vulnerable Growth,"
American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2016. "Vulnerable growth," Staff Reports 794, Federal Reserve Bank of New York.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2018. "Vulnerable Growth," Liberty Street Economics 20180409, Federal Reserve Bank of New York.
- Nina Boyarchenko & Domenico Giannone & Tobias Adrian, 2017. "Vulnerable Growth," 2017 Meeting Papers 1317, Society for Economic Dynamics.
- Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2016. "Vulnerable Growth," CEPR Discussion Papers 11583, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Rudebusch, Glenn D. & Williams, John C., 2009.
"Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
- Glenn D. Rudebusch & John C. Williams, 2007. "Forecasting recessions: the puzzle of the enduring power of the yield curve," Working Paper Series 2007-16, Federal Reserve Bank of San Francisco.
- Bräuning, Falk & Koopman, Siem Jan, 2014.
"Forecasting macroeconomic variables using collapsed dynamic factor analysis,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
- Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Simon Gilchrist & Egon Zakrajsek, 2012.
"Credit Spreads and Business Cycle Fluctuations,"
American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
- Simon Gilchrist & Egon Zakrajšek, 2011. "Credit Spreads and Business Cycle Fluctuations," NBER Working Papers 17021, National Bureau of Economic Research, Inc.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- James H. Stock & Mark W. Watson, 1989.
"New Indexes of Coincident and Leading Economic Indicators,"
NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409,
National Bureau of Economic Research, Inc.
- Stock, J.H. & Watson, M.W., 1989. "New Indexes Of Coincident And Leading Economic Indicators," Papers 178d, Harvard - J.F. Kennedy School of Government.
- Tyler Pike & Horacio Sapriza & Tom Zimmermann, 2019. "Bottom-up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults using Machine Learning," Finance and Economics Discussion Series 2019-070, Board of Governors of the Federal Reserve System (U.S.).
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Michael T. Kiley, 2020.
"The Global Equilibrium Real Interest Rate: Concepts, Estimates, and Challenges,"
Annual Review of Financial Economics, Annual Reviews, vol. 12(1), pages 305-326, December.
- Michael T. Kiley, 2019. "The Global Equilibrium Real Interest Rate: Concepts, Estimates, and Challenges," Finance and Economics Discussion Series 2019-076, Board of Governors of the Federal Reserve System (U.S.).
- Scott A. Brave & R. Andrew Butters & David Kelley, 2019. "A New “Big Data” Index of U.S. Economic Activity," Economic Perspectives, Federal Reserve Bank of Chicago, issue 1, pages 1-30.
- Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
- William English & Kostas Tsatsaronis & Edda Zoli, 2005. "Assessing the predictive power of measures of financial conditions for macroeconomic variables," BIS Papers chapters, in: Bank for International Settlements (ed.), Investigating the relationship between the financial and real economy, volume 22, pages 228-52, Bank for International Settlements.
- Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Cogley, Timothy & Nason, James M., 1995.
"Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research,"
Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
- Timothy Cogley & James M. Nason, 1993. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series: implications for business cycle research," Working Papers in Applied Economic Theory 93-01, Federal Reserve Bank of San Francisco.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- Margarita Debuque-Gonzales & Maria Socorro Gochoco-Bautista, 2017. "Financial Conditions Indexes and Monetary Policy in Asia," Asian Economic Papers, MIT Press, vol. 16(2), pages 83-117, Summer.
- Arrigoni, Simone & Bobasu, Alina & Venditti, Fabrizio, 2020.
"The simpler the better: measuring financial conditions for monetary policy and financial stability,"
Working Paper Series
2451, European Central Bank.
- Arrigoni, Simone & Bobasu, Alina & Venditti, Fabrizio, 2021. "The simpler, the better: Measuring financial conditions for monetary policy and financial stability," EIB Working Papers 2021/10, European Investment Bank (EIB).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Simone Arrigoni & Alina Bobasu & Fabrizio Venditti, 2022. "Measuring Financial Conditions using Equal Weights Combination," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 668-697, December.
- Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
- Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021.
"Identifying indicators of systemic risk,"
Journal of International Economics, Elsevier, vol. 132(C).
- Hartwig, Benny & Meinerding, Christoph & Schüler, Yves, 2020. "Identifying indicators of systemic risk," Discussion Papers 33/2020, Deutsche Bundesbank.
- Barigozzi, Matteo & Trapani, Lorenzo, 2020.
"Sequential testing for structural stability in approximate factor models,"
Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
- Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org, revised Mar 2020.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Sequential testing for structural stability in approximate factor models," Discussion Papers 18/04, University of Nottingham, Granger Centre for Time Series Econometrics.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Velasco, Sofia, 2024. "Asymmetries in the transmission of monetary policy shocks over the business cycle: a Bayesian Quantile Factor Augmented VAR," Working Paper Series 2983, European Central Bank.
- Thiago Revil T. Ferreira & Samer Shousha, 2021. "Supply of Sovereign Safe Assets and Global Interest Rates," International Finance Discussion Papers 1315, Board of Governors of the Federal Reserve System (U.S.).
- Drew Creal & Siem Jan Koopman & Eric Zivot, 2010.
"Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
- Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "Extracting a Robust U.S. Business Cycle Using a Time-Varying Multivariate Model-Based Bandpass Filter," Working Papers UWEC-2008-15-FC, University of Washington, Department of Economics.
- Kappler, Marcus & Schleer, Frauke, 2017.
"A financially stressed euro area,"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-37.
- Kappler, Marcus & Schleer, Frauke, 2016. "A financially stressed Euro area," Economics Discussion Papers 2016-22, Kiel Institute for the World Economy (IfW Kiel).
- Wang, Bo & Li, Haoran, 2021. "Downside risk, financial conditions and systemic risk in China," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
- Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015.
"Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
- Giannone, Domenico & Bańbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," Working Paper Series 1733, European Central Bank.
- Giannone, Domenico & Banbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," CEPR Discussion Papers 9931, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Michèle Lenza, 2014. "Conditional Forecasts and Scenario Analysis with Vector Autoregressions for Large Cross-Sections," Working Papers ECARES ECARES 2014-15, ULB -- Universite Libre de Bruxelles.
- Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010.
"New Eurocoin: Tracking Economic Growth in Real Time,"
The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
- Lippi, Marco & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni, 2006. "New EuroCOIN: Tracking Economic Growth in Real Time," CEPR Discussion Papers 5633, C.E.P.R. Discussion Papers.
- Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2007. "New Eurocoin: Tracking Economic Growth in Real Time," Temi di discussione (Economic working papers) 631, Bank of Italy, Economic Research and International Relations Area.
- Mario Forni & Filippo Altissimo & Riccardo Cristadoro & Marco Lippi & Giovanni Veronese., 2008. "New Eurocoin: Tracking Economic Growth in Real Time," Center for Economic Research (RECent) 020, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
More about this item
Keywords
Big Data; Recession Prediction; Variable Selection;All these keywords.
JEL classification:
- E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-12-07 (Big Data)
- NEP-CMP-2020-12-07 (Computational Economics)
- NEP-MAC-2020-12-07 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2020-95. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.