Predicting Operational Loss Exposure Using Past Losses
Author
Abstract
Suggested Citation
DOI: 10.17016/FEDS.2016.002r1
Download full text from publisher
References listed on IDEAS
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011.
"Evaluating Value-at-Risk Models via Quantile Regression,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
- Gaglianone, Wagner Piazza & Linton, Oliver & Lima, Luiz Renato Regis de Oliveira, 2008. "Evaluating Value-at-Risk models via Quantile regressions," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 679, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel Smith, 2010. "Evaluating Value-at-Risk Models via Quantile Regression," NCER Working Paper Series 67, National Centre for Econometric Research.
- Wagner P. Gaglianone & Luiz Renato Lima & Oliver Linton, 2008. "Evaluating Value-at-Risk Models via Quantile Regressions," Working Papers Series 161, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel, 2009. "Evaluating Value-at-Risk models via Quantile Regression," UC3M Working papers. Economics we094625, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008.
"Do banks overstate their Value-at-Risk?,"
Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
- Christophe Pérignon & Zi Yin Deng & Zhi Jun Wang, 2008. "Do banks overstate their Value-at-Risk?," Post-Print hal-00461046, HAL.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008.
"Bootstrap-Based Improvements for Inference with Clustered Errors,"
The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
- Jonah B. Gelbach & Doug Miller & A. Colin Cameron, 2006. "Bootstrap-Based Improvements for Inference with Clustered Errors," Working Papers 128, University of California, Davis, Department of Economics.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2007. "Bootstrap-Based Improvements for Inference with Clustered Errors," NBER Technical Working Papers 0344, National Bureau of Economic Research, Inc.
- Cope, Eric W. & Piche, Mark T. & Walter, John S., 2012. "Macroenvironmental determinants of operational loss severity," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1362-1380.
- Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
- Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
- Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
- Azamat Abdymomunov & Filippo Curti & Atanas Mihov, 2020. "U.S. Banking Sector Operational Losses and the Macroeconomic Environment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 115-144, February.
- Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
- Edward I. Altman & Gabriele Sabato, 2013.
"MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET,"
World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279,
World Scientific Publishing Co. Pte. Ltd..
- Edward I. Altman & Gabriele Sabato, 2007. "Modelling Credit Risk for SMEs: Evidence from the U.S. Market," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 332-357, September.
- repec:cup:jfinqa:v:46:y:2011:i:06:p:1683-1725_00 is not listed on IDEAS
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Greg M. Gupton, 2005. "Advancing Loss Given Default Prediction Models: How the Quiet Have Quickened," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(2), pages 185-230, July.
- Lopez, Jose A. & Saidenberg, Marc R., 2000.
"Evaluating credit risk models,"
Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 151-165, January.
- Jose A. Lopez & Marc R. Saidenberg, 1999. "Evaluating credit risk models," Working Papers in Applied Economic Theory 99-06, Federal Reserve Bank of San Francisco.
- Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
- J. Carlos Escanciano & Jose Olmo, 2011. "Robust Backtesting Tests for Value-at-risk Models," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 132-161, Winter.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Filippo Curti & Marco Migueis & Rob T. Stewart, 2019. "Benchmarking Operational Risk Stress Testing Models," Finance and Economics Discussion Series 2019-038, Board of Governors of the Federal Reserve System (U.S.).
- Marco Migueis, 2019. "Evaluating the AMA and the new standardized approach for operational risk capital," Journal of Banking Regulation, Palgrave Macmillan, vol. 20(4), pages 302-311, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Katherine Uylangco & Siqiwen Li, 2016. "An evaluation of the effectiveness of Value-at-Risk (VaR) models for Australian banks under Basel III," Australian Journal of Management, Australian School of Business, vol. 41(4), pages 699-718, November.
- James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
- Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.
- Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014.
"Risk models-at-risk,"
Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-02312332, HAL.
- Christophe Boucher & Jón Daníelsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-01243413, HAL.
- Boucher, Christophe M. & Danielsson, Jon & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models–at–risk," LSE Research Online Documents on Economics 59299, London School of Economics and Political Science, LSE Library.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk Model-at-Risk," Post-Print hal-01386003, HAL.
- Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013.
"The Risk Map: A new tool for validating risk models,"
Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
- Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2012. "The Risk Map: A New Tool for Validating Risk Models," Working Papers halshs-00746273, HAL.
- Tchamyou, Vanessa S. & Asongu, Simplice A., 2017.
"Conditional market timing in the mutual fund industry,"
Research in International Business and Finance, Elsevier, vol. 42(C), pages 1355-1366.
- Tchamyou, Vanessa & Asongu, Simplice, 2017. "Conditional Market Timing in the Mutual Fund Industry," MPRA Paper 82633, University Library of Munich, Germany.
- Vanessa S. Tchamyou & Simplice A. Asongu, 2017. "Conditional Market Timing in the Mutual Fund Industry," Research Africa Network Working Papers 17/028, Research Africa Network (RAN).
- Vanessa Tchamyou & Simplice Asongu, 2017. "Conditional Market Timing in the Mutual Fund Industry," Working Papers of the African Governance and Development Institute. 17/028, African Governance and Development Institute..
- O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017.
"Forecasting Value-at-Risk under Temporal and Portfolio Aggregation,"
Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
- Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2015. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Tinbergen Institute Discussion Papers 15-140/III, Tinbergen Institute, revised 19 Apr 2017.
- Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
- Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
- Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020.
"A cost-benefit analysis of capital requirements adjusted for model risk,"
Journal of Corporate Finance, Elsevier, vol. 65(C).
- Walter Farkas & Fulvia Fringuellotti & Radu Tunaru, 2020. "A Cost-Benefit Analysis of Capital Requirements Adjusted for Model Risk," Swiss Finance Institute Research Paper Series 20-86, Swiss Finance Institute.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Pedro Pires & João Pedro Pereira & LuÃs Filipe Martins, 2015. "The Empirical Determinants of Credit Default Swap Spreads: a Quantile Regression Approach," European Financial Management, European Financial Management Association, vol. 21(3), pages 556-589, June.
- Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014.
"Examining what best explains corporate credit risk: accounting-based versus market-based models,"
Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
- Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2012. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Working Papers 12.03, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
- Zhu, Xuening & Wang, Weining & Wang, Hansheng & Härdle, Wolfgang Karl, 2019.
"Network quantile autoregression,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 345-358.
- Zhu, Xuening & Wang, Weining & Wang, Hangsheng & Härdle, Wolfgang Karl, 2016. "Network quantile autoregression," SFB 649 Discussion Papers 2016-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
More about this item
Keywords
Banking Regulation; Risk Management; Operational Risk; Tail Risk; Quantile Regression;All these keywords.
JEL classification:
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CFN-2016-02-29 (Corporate Finance)
- NEP-FOR-2016-02-29 (Forecasting)
- NEP-RMG-2016-02-29 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2016-02. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.