IDEAS home Printed from https://ideas.repec.org/a/bla/ecnote/v34y2005i2p185-230.html
   My bibliography  Save this article

Advancing Loss Given Default Prediction Models: How the Quiet Have Quickened

Author

Listed:
  • Greg M. Gupton

Abstract

We describe LossCalc™ version 2.0: the Moody's KMV model to predict loss given default (LGD), the equivalent of (1 − recovery rate). LossCalc is a statistical model that applies multiple predictive factors at different information levels: collateral, instrument, firm, industry, country and the macroeconomy to predict LGD. We find that distance‐to‐default measures (from the Moody's KMV structural model of default likelihood) compiled at both the industry and firm levels are predictive of LGD. We find that recovery rates worldwide are predictable within a common statistical framework, which suggests that the estimation of economic firm value (which is then available to allocate to claimants according to each country's bankruptcy laws) is a dominant step in LGD determination. LossCalc is built on a global dataset of 3,026 recovery observations for loans, bonds and preferred stock from 1981 to 2004. This dataset includes 1,424 defaults of both public and private firms – both rated and unrated instruments – in all industries. We demonstrate out‐of‐sample and out‐of‐time LGD model validation. The model significantly improves on the use of historical recovery averages to predict LGD.

Suggested Citation

  • Greg M. Gupton, 2005. "Advancing Loss Given Default Prediction Models: How the Quiet Have Quickened," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(2), pages 185-230, July.
  • Handle: RePEc:bla:ecnote:v:34:y:2005:i:2:p:185-230
    DOI: 10.1111/j.0391-5026.2005.00149.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0391-5026.2005.00149.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0391-5026.2005.00149.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Tasche, 2004. "The single risk factor approach to capital charges in case of correlated loss given default rates," Papers cond-mat/0402390, arXiv.org, revised Feb 2004.
    2. Ivailo Izvorski, 1997. "Recovery Ratios and Survival Times for Corporate Bonds," IMF Working Papers 1997/084, International Monetary Fund.
    3. Eberhart, Allan C & Sweeney, Richard J, 1992. "Does the Bond Market Predict Bankruptcy Settlements?," Journal of Finance, American Finance Association, vol. 47(3), pages 943-980, July.
    4. Mensah, Ym, 1984. "An Examination Of The Stationarity Of Multivariate Bankruptcy Prediction Models - A Methodological Study," Journal of Accounting Research, Wiley Blackwell, vol. 22(1), pages 380-395.
    5. Charles T. Carlstrom & Stanley D. Longhofer, 1995. "Absolute priority rule violations in bankruptcy," Economic Review, Federal Reserve Bank of Cleveland, issue Q IV, pages 21-30.
    6. Stanley D. Longhofer, 1995. "A note on absolute priority rule violations, credit rationing, and efficiency," Working Papers (Old Series) 9513, Federal Reserve Bank of Cleveland.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Witzany & Michal Rychnovský & Pavel Charamza, 2012. "Survival Analysis in LGD Modeling," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2012(1), pages 6-27.
    2. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    3. Dannenberg, Henry, 2006. "Die Verlustverteilung des unternehmerischen Forderungsausfallrisikos – Eine simulationsbasierte Modellierung," IWH Discussion Papers 10/2006, Halle Institute for Economic Research (IWH).
    4. Mustapha Ammari & Ghizlane Lakhnati, 2017. "Loss Given Default Estimating by the Conditional Minimum Value," International Journal of Economics and Financial Issues, Econjournals, vol. 7(3), pages 779-785.
    5. Rumyantseva, Ekaterina & Furmanov, Kirill, 2017. "Realisation of mortgage property: Survival analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 22-43.
    6. Yashkir, Olga & Yashkir, Yuriy, 2013. "Loss Given Default Modelling: Comparative Analysis," MPRA Paper 46147, University Library of Munich, Germany.
    7. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    8. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, January.
    9. Jiří Witzany, 2009. "Unexpected Recovery Risk and LGD Discount Rate Determination," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2009(1), pages 61-84.
    10. Stefan Hlawatsch, 2009. "A Framework for LGD Validation of Retail Portfolios," FEMM Working Papers 09025, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    11. Filippo Curti & Marco Migueis, 2016. "Predicting Operational Loss Exposure Using Past Losses," Finance and Economics Discussion Series 2016-2, Board of Governors of the Federal Reserve System (U.S.).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Carapeto, 2006. "Explaining Deviations from Absolute Priority Rules in Bankruptcy," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 3(3), pages 543-560, November.
    2. Acharya, Viral V. & Bharath, Sreedhar T. & Srinivasan, Anand, 2007. "Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries," Journal of Financial Economics, Elsevier, vol. 85(3), pages 787-821, September.
    3. Stef Nicolae, 2017. "Voting Rules in Bankruptcy Law," Review of Law & Economics, De Gruyter, vol. 13(1), pages 1-39, March.
    4. Khieu, Hinh D. & Mullineaux, Donald J. & Yi, Ha-Chin, 2012. "The determinants of bank loan recovery rates," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 923-933.
    5. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    6. Taieb Hamadi & Sami El Omari, & Wafa Khlif, 2012. "Poids De L'Avis De L'Expert Comptable Judiciaire Dans La Decision Du Juge En Matiere De Redressement Judiciaire : Cas De La Tunisie," Post-Print hal-00937922, HAL.
    7. Longhofer, Stanley D., 1997. "Absolute Priority Rule Violations, Credit Rationing, and Efficiency," Journal of Financial Intermediation, Elsevier, vol. 6(3), pages 249-267, July.
    8. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
    10. Giriati, 2018. "Determinants of the Success of Corporate Recovery in Financial Distressed Company," GATR Journals jfbr141, Global Academy of Training and Research (GATR) Enterprise.
    11. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    12. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    13. Barbagli, Matteo & Vrins, Frédéric, 2023. "Accounting for PD-LGD dependency: A tractable extension to the Basel ASRF framework," Economic Modelling, Elsevier, vol. 125(C).
    14. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    15. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    16. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    17. Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
    18. Yung-Ho Chiu & Yu-Chuan Chen & Yu Han Hung, 2009. "Basel II and bank bankruptcy analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1843-1847.
    19. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    20. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecnote:v:34:y:2005:i:2:p:185-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0391-5026 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.