Generation Next: Experimentation with AI
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Gary Charness & Brian Jabarian & John A. List, 2023. "Generation Next: Experimentation with AI," NBER Working Papers 31679, National Bureau of Economic Research, Inc.
References listed on IDEAS
- Susan Athey & Michael Luca, 2019.
"Economists (and Economics) in Tech Companies,"
Journal of Economic Perspectives, American Economic Association, vol. 33(1), pages 209-230, Winter.
- Athey, Susan & Luca, Michael, 2018. "Economists (and Economics) in Tech Companies," Research Papers 3735, Stanford University, Graduate School of Business.
- Susan Athey & Michael Luca, 2018. "Economists (and Economics) in Tech Companies," Harvard Business School Working Papers 19-027, Harvard Business School.
- Susan Athey & Michael Luca, 2018. "Economists (and Economics) in Tech Companies," NBER Working Papers 25064, National Bureau of Economic Research, Inc.
- Luigi Butera & Philip Grossman & Daniel Houser & John List & Marie-Claire Villeval, 2020.
"A New Mechanism to Alleviate the Crises of Confidence in Science - With an Application to the Public Goods Game,"
Artefactual Field Experiments
00684, The Field Experiments Website.
- Luigi Butera & Philip J Grossman & Daniel Houser & John A List & Marie Claire Villeval, 2022. "A New Mechanism to Alleviate the Crises of Confi dence in Science With An Application to the Public Goods Game," Working Papers hal-03725592, HAL.
- Luigi Butera & Philip J. Grossman & Daniel Houser & John A. List & Marie Claire Villeval, 2020. "A New Mechanism to Alleviate the Crises of Confidence in Science - With an Application to the Public Goods Game," Monash Economics Working Papers 03-20, Monash University, Department of Economics.
- Luigi Butera & Philip J. Grossman & Daniel Houser & John A. List & Marie-Claire Villeval, 2020. "A New Mechanism to Alleviate the Crises of Confidence in Science-With An Application to the Public Goods Game," NBER Working Papers 26801, National Bureau of Economic Research, Inc.
- Luigi Butera & Philip J. Grossman & Daniel Houser & John A. List & Marie Claire Villeval, 2020. "A New Mechanism to Alleviate the Crises of Con?dence in Science With An Application to the Public Goods Game," Working Papers 2011, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
- John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
- Deaton, Angus & Cartwright, Nancy, 2018.
"Understanding and misunderstanding randomized controlled trials,"
Social Science & Medicine, Elsevier, vol. 210(C), pages 2-21.
- Angus Deaton & Nancy Cartwright, 2016. "Understanding and Misunderstanding Randomized Controlled Trials," Working Papers august_25.pdf, Princeton University, Woodrow Wilson School of Public and International Affairs, Research Program in Development Studies..
- Angus Deaton & Nancy Cartwright, 2017. "Understanding and misunderstanding randomized controlled trials," Working Papers 2017-10, Princeton University, Woodrow Wilson School of Public and International Affairs, Center for Health and Wellbeing..
- Angus Deaton & Nancy Cartwright, 2016. "Understanding and Misunderstanding Randomized Controlled Trials," NBER Working Papers 22595, National Bureau of Economic Research, Inc.
- Colin F. Camerer, 2018. "Artificial Intelligence and Behavioral Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 587-608, National Bureau of Economic Research, Inc.
- Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2023.
"Generative AI at Work,"
Papers
2304.11771, arXiv.org, revised Nov 2024.
- Erik Brynjolfsson & Danielle Li & Lindsey R. Raymond, 2023. "Generative AI at Work," NBER Working Papers 31161, National Bureau of Economic Research, Inc.
- Brynjolfsson, Erik & Li, Danielle & Raymond, Lindsey R., 2023. "Generative AI at Work," Research Papers 4141, Stanford University, Graduate School of Business.
- Gordon Pennycook & Ziv Epstein & Mohsen Mosleh & Antonio A. Arechar & Dean Eckles & David G. Rand, 2021. "Shifting attention to accuracy can reduce misinformation online," Nature, Nature, vol. 592(7855), pages 590-595, April.
- Gary Charness & Guillaume R. Frechette & John H. Kagel, 2004.
"How Robust is Laboratory Gift Exchange?,"
Experimental Economics, Springer;Economic Science Association, vol. 7(2), pages 189-205, June.
- Charness, Gary & Frechette, Guillaume R & Kagel, John H, 2002. "How Robust is Laboratory Gift Exchange?," University of California at Santa Barbara, Economics Working Paper Series qt8qq4k3ph, Department of Economics, UC Santa Barbara.
- Anton Korinek, 2023.
"Language Models and Cognitive Automation for Economic Research,"
NBER Working Papers
30957, National Bureau of Economic Research, Inc.
- Korinek, Anton, 2023. "Language Models and Cognitive Automation for Economic Research," CEPR Discussion Papers 17923, C.E.P.R. Discussion Papers.
- Matthew O. Jackson, 2009. "Networks and Economic Behavior," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 489-513, May.
- Alex Davies & Petar Veličković & Lars Buesing & Sam Blackwell & Daniel Zheng & Nenad Tomašev & Richard Tanburn & Peter Battaglia & Charles Blundell & András Juhász & Marc Lackenby & Geordie Williamson, 2021. "Advancing mathematics by guiding human intuition with AI," Nature, Nature, vol. 600(7887), pages 70-74, December.
- Luigi Butera & Philip J Grossman & Daniel Houser & John A List & Marie Claire Villeval, 2020. "A New Mechanism to Alleviate the Crises of Confidence in Science With An Application to the Public Goods GameA Review," Working Papers halshs-02512932, HAL.
- John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
- Guillaume R. Fréchette & Kim Sarnoff & Leeat Yariv, 2022. "Experimental Economics: Past and Future," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 777-794, August.
- Jake M. Hofman & Duncan J. Watts & Susan Athey & Filiz Garip & Thomas L. Griffiths & Jon Kleinberg & Helen Margetts & Sendhil Mullainathan & Matthew J. Salganik & Simine Vazire & Alessandro Vespignani, 2021. "Integrating explanation and prediction in computational social science," Nature, Nature, vol. 595(7866), pages 181-188, July.
- Erik Snowberg & Leeat Yariv, 2021. "Testing the Waters: Behavior across Participant Pools," American Economic Review, American Economic Association, vol. 111(2), pages 687-719, February.
- Richard A. Bettis, 2012. "The search for asterisks: Compromised statistical tests and flawed theories," Strategic Management Journal, Wiley Blackwell, vol. 33(1), pages 108-113, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Samuel Chang & Andrew Kennedy & Aaron Leonard & John List, 2024.
"12 Best Practices for Leveraging Generative AI in Experimental Research,"
Artefactual Field Experiments
00796, The Field Experiments Website.
- Samuel Chang & Andrew Kennedy & Aaron Leonard & John A. List, 2024. "12 Best Practices for Leveraging Generative AI in Experimental Research," NBER Working Papers 33025, National Bureau of Economic Research, Inc.
- Brian Jabarian, 2024. "Large Language Models for Behavioral Economics: Internal Validity and Elicitation of Mental Models," Papers 2407.12032, arXiv.org.
- Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
- Rosa-García, Alfonso, 2024. "Student Reactions to AI-Replicant Professor in an Econ101 Teaching Video," MPRA Paper 120135, University Library of Munich, Germany.
- Mourelatos, Evangelos & Zervas, Panagiotis & Lagios, Dimitris & Tzimas, Giannis, 2024. "Can AI Bridge the Gender Gap in Competitiveness?," GLO Discussion Paper Series 1404, Global Labor Organization (GLO).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
- Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
- Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023.
"The emergence of economic rationality of GPT,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
- Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The Emergence of Economic Rationality of GPT," Papers 2305.12763, arXiv.org, revised Nov 2023.
- Samuel Chang & Andrew Kennedy & Aaron Leonard & John A. List, 2024.
"12 Best Practices for Leveraging Generative AI in Experimental Research,"
NBER Working Papers
33025, National Bureau of Economic Research, Inc.
- Samuel Chang & Andrew Kennedy & Aaron Leonard & John List, 2024. "12 Best Practices for Leveraging Generative AI in Experimental Research," Artefactual Field Experiments 00796, The Field Experiments Website.
- Takeuchi, Ai & Seki, Erika, 2023.
"Coordination and free-riding problems in the provision of multiple public goods,"
Journal of Economic Behavior & Organization, Elsevier, vol. 206(C), pages 95-121.
- Ai Takeuchi & Erika Seki, 2020. "Coordination and free-riding problems in the provision of multiple public goods," Discussion Papers in Economics and Business 19-15-Rev., Osaka University, Graduate School of Economics.
- Rosa-García, Alfonso, 2024. "Student Reactions to AI-Replicant Professor in an Econ101 Teaching Video," MPRA Paper 120135, University Library of Munich, Germany.
- Omar Al-Ubaydli & John List & Claire Mackevicius & Min Sok Lee & Dana Suskind, 2019. "How Can Experiments Play a Greater Role in Public Policy? 12 Proposals from an Economic Model of Scaling," Artefactual Field Experiments 00679, The Field Experiments Website.
- John A. List, 2024.
"Optimally generate policy-based evidence before scaling,"
Nature, Nature, vol. 626(7999), pages 491-499, February.
- John List, 2024. "Optimally Generate Policy-Based Evidence Before Scaling," Natural Field Experiments 00783, The Field Experiments Website.
- Kevin Leyton-Brown & Paul Milgrom & Neil Newman & Ilya Segal, 2024. "Artificial Intelligence and Market Design: Lessons Learned from Radio Spectrum Reallocation," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
- Marie Ferré & Stefanie Engel & Elisabeth Gsottbauer, 2023. "External validity of economic experiments on Agri‐environmental scheme design," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 661-685, September.
- Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
- Elias Bouacida & Renaud Foucart, 2022. "Rituals of Reason," Working Papers 344119591, Lancaster University Management School, Economics Department.
- Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.
- Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019.
"The Dozen Things Experimental Economists Should Do (More of),"
Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
- Eszter Czibor & David Jimenez-Gomez & John List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Artefactual Field Experiments 00648, The Field Experiments Website.
- Eszter Czibor & David Jimenez-Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," NBER Working Papers 25451, National Bureau of Economic Research, Inc.
- Holtdirk, Tobias & Assenmacher, Dennis & Bleier, Arnim & Wagner, Claudia, 2024. "Fine-Tuning Large Language Models to Simulate German Voting Behaviour (Working Paper)," OSF Preprints udz28_v1, Center for Open Science.
- Joshua C. Yang & Damian Dailisan & Marcin Korecki & Carina I. Hausladen & Dirk Helbing, 2024. "LLM Voting: Human Choices and AI Collective Decision Making," Papers 2402.01766, arXiv.org, revised Aug 2024.
- Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
- Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531, arXiv.org, revised Jun 2023.
- Cova, Joshua & Schmitz, Luuk, 2024. "A primer for the use of classifier and generative large language models in social science research," OSF Preprints r3qng_v1, Center for Open Science.
- Gruner, Sven & Lehberger, Mira & Hirschauer, Norbert & Mußhoff, Oliver, 2022.
"How (un)informative are experiments with students for other social groups? A study of agricultural students and farmers,"
Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(03), January.
- Sven Grüner & Mira Lehberger & Norbert Hirschauer & Oliver Mußhoff, 2022. "How (un)informative are experiments with students for other social groups? A study of agricultural students and farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 471-504, July.
More about this item
JEL classification:
- C0 - Mathematical and Quantitative Methods - - General
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
- C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
- C9 - Mathematical and Quantitative Methods - - Design of Experiments
- C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
- C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
- C99 - Mathematical and Quantitative Methods - - Design of Experiments - - - Other
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AIN-2023-09-25 (Artificial Intelligence)
- NEP-EXP-2023-09-25 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:feb:artefa:00777. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesca Pagnotta (email available below). General contact details of provider: http://www.fieldexperiments.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.