IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.06330.html
   My bibliography  Save this paper

Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations

Author

Listed:
  • Zengqing Wu
  • Run Peng
  • Xu Han
  • Shuyuan Zheng
  • Yixin Zhang
  • Chuan Xiao

Abstract

Computer simulations offer a robust toolset for exploring complex systems across various disciplines. A particularly impactful approach within this realm is Agent-Based Modeling (ABM), which harnesses the interactions of individual agents to emulate intricate system dynamics. ABM's strength lies in its bottom-up methodology, illuminating emergent phenomena by modeling the behaviors of individual components of a system. Yet, ABM has its own set of challenges, notably its struggle with modeling natural language instructions and common sense in mathematical equations or rules. This paper seeks to transcend these boundaries by integrating Large Language Models (LLMs) like GPT into ABM. This amalgamation gives birth to a novel framework, Smart Agent-Based Modeling (SABM). Building upon the concept of smart agents -- entities characterized by their intelligence, adaptability, and computation ability -- we explore in the direction of utilizing LLM-powered agents to simulate real-world scenarios with increased nuance and realism. In this comprehensive exploration, we elucidate the state of the art of ABM, introduce SABM's potential and methodology, and present three case studies (source codes available at https://github.com/Roihn/SABM), demonstrating the SABM methodology and validating its effectiveness in modeling real-world systems. Furthermore, we cast a vision towards several aspects of the future of SABM, anticipating a broader horizon for its applications. Through this endeavor, we aspire to redefine the boundaries of computer simulations, enabling a more profound understanding of complex systems.

Suggested Citation

  • Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2311.06330
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.06330
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Mills & S. Costa & C. R. Sunstein, 2023. "AI, Behavioural Science, and Consumer Welfare," Journal of Consumer Policy, Springer, vol. 46(3), pages 387-400, September.
    2. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    3. Flaminio Squazzoni & J. Gareth Polhill & Bruce Edmonds & Petra Ahrweiler & Patrycja Antosz & Geeske Scholz & Emile Chappin & Melania Borit & Harko Verhagen & Francesca Giardini & Nigel Gilbert, 2020. "Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-10.
    4. B L Heath & R R Hill, 2010. "Some insights into the emergence of agent-based modelling," Journal of Simulation, Taylor & Francis Journals, vol. 4(3), pages 163-169, September.
    5. Andres, Maximilian & Bruttel, Lisa & Friedrichsen, Jana, 2023. "How communication makes the difference between a cartel and tacit collusion: A machine learning approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152, pages 1-1.
    6. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    7. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    8. Milton Bloombaum, 1991. "Influence of research design upon data analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 25(3), pages 327-331, August.
    9. Mark E Nissen & Raymond E Levitt, 2004. "Agent-based modeling of knowledge dynamics," Knowledge Management Research & Practice, Taylor & Francis Journals, vol. 2(3), pages 169-183, December.
    10. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    11. Tesfatsion, Leigh, 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," ISU General Staff Papers 200201010800001251, Iowa State University, Department of Economics.
    12. Sterman, John., 1994. "Learning in and about complex systems," Working papers 3660-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    13. Molood Ale Ebrahim Dehkordi & Jonas Lechner & Amineh Ghorbani & Igor Nikolic & Emile Chappin & Paulien Herder, 2023. "Using Machine Learning for Agent Specifications in Agent-Based Models and Simulations: A Critical Review and Guidelines," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(1), pages 1-9.
    14. Avishalom Tor & Oren Gazal‐Ayal & Stephen M. Garcia, 2010. "Fairness and the Willingness to Accept Plea Bargain Offers," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 7(1), pages 97-116, March.
    15. Celeste Biever, 2023. "ChatGPT broke the Turing test — the race is on for new ways to assess AI," Nature, Nature, vol. 619(7971), pages 686-689, July.
    16. Riccardo Boero & Flaminio Squazzoni, 2005. "Does Empirical Embeddedness Matter? Methodological Issues on Agent-Based Models for Analytical Social Science," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-6.
    17. Ahmad Taher Azar, 2012. "System dynamics as a useful technique for complex systems," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(4), pages 377-410.
    18. J. Gareth Polhill & Dawn C. Parker & Daniel Brown & Volker Grimm, 2008. "Using the ODD Protocol for Describing Three Agent-Based Social Simulation Models of Land-Use Change," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-3.
    19. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    20. Mitton,Lavinia & Sutherland,Holly & Weeks,Melvyn (ed.), 2000. "Microsimulation Modelling for Policy Analysis," Cambridge Books, Cambridge University Press, number 9780521790062, January.
    21. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    22. D. Cale Reeves & Nicholas Willems & Vivek Shastry & Varun Rai, 2022. "Structural Effects of Agent Heterogeneity in Agent-Based Models: Lessons from the Social Spread of COVID-19," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(3), pages 1-3.
    23. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    24. Yongxing Li & Hongfei Jia & Jun Li & Jian Gong & Kechao Sun, 2017. "Pedestrian evacuation behavior analysis and simulation in multi-exits case," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Han & Zengqing Wu & Chuan Xiao, 2023. ""Guinea Pig Trials" Utilizing GPT: A Novel Smart Agent-Based Modeling Approach for Studying Firm Competition and Collusion," Papers 2308.10974, arXiv.org, revised Jan 2024.
    2. Zengqing Wu & Run Peng & Shuyuan Zheng & Qianying Liu & Xu Han & Brian Inhyuk Kwon & Makoto Onizuka & Shaojie Tang & Chuan Xiao, 2024. "Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents," Papers 2402.12327, arXiv.org, revised Oct 2024.
    3. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    4. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    5. Kevin Leyton-Brown & Paul Milgrom & Neil Newman & Ilya Segal, 2024. "Artificial Intelligence and Market Design: Lessons Learned from Radio Spectrum Reallocation," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    6. Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    7. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    8. Joshua C. Yang & Damian Dailisan & Marcin Korecki & Carina I. Hausladen & Dirk Helbing, 2024. "LLM Voting: Human Choices and AI Collective Decision Making," Papers 2402.01766, arXiv.org, revised Aug 2024.
    9. Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
    10. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    11. Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531, arXiv.org, revised Jun 2023.
    12. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    13. Yuan Gao & Dokyun Lee & Gordon Burtch & Sina Fazelpour, 2024. "Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina," Papers 2410.19599, arXiv.org, revised Nov 2024.
    14. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    15. Christoph Engel & Max R. P. Grossmann & Axel Ockenfels, 2023. "Integrating machine behavior into human subject experiments: A user-friendly toolkit and illustrations," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2024_01, Max Planck Institute for Research on Collective Goods.
    16. F. LeRon Shults & Wesley J. Wildman, 2020. "Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    17. Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The emergence of economic rationality of GPT," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
    18. Samuel Chang & Andrew Kennedy & Aaron Leonard & John A. List, 2024. "12 Best Practices for Leveraging Generative AI in Experimental Research," NBER Working Papers 33025, National Bureau of Economic Research, Inc.
    19. Jiafu An & Difang Huang & Chen Lin & Mingzhu Tai, 2024. "Measuring Gender and Racial Biases in Large Language Models," Papers 2403.15281, arXiv.org.
    20. James Nolan & Dawn Parker & G. Cornelis Van Kooten & Thomas Berger, 2009. "An Overview of Computational Modeling in Agricultural and Resource Economics," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 417-429, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.06330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.