IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v595y2021i7866d10.1038_s41586-021-03659-0.html
   My bibliography  Save this article

Integrating explanation and prediction in computational social science

Author

Listed:
  • Jake M. Hofman

    (Microsoft Research)

  • Duncan J. Watts

    (University of Pennsylvania
    University of Pennsylvania
    University of Pennsylvania)

  • Susan Athey

    (Stanford University)

  • Filiz Garip

    (Princeton University)

  • Thomas L. Griffiths

    (Princeton University
    Princeton University)

  • Jon Kleinberg

    (Cornell University
    Cornell University)

  • Helen Margetts

    (University of Oxford
    The Alan Turing Institute)

  • Sendhil Mullainathan

    (University of Chicago)

  • Matthew J. Salganik

    (Princeton University)

  • Simine Vazire

    (University of Melbourne)

  • Alessandro Vespignani

    (Northeastern University)

  • Tal Yarkoni

    (University of Texas at Austin)

Abstract

Computational social science is more than just large repositories of digital data and the computational methods needed to construct and analyse them. It also represents a convergence of different fields with different ways of thinking about and doing science. The goal of this Perspective is to provide some clarity around how these approaches differ from one another and to propose how they might be productively integrated. Towards this end we make two contributions. The first is a schema for thinking about research activities along two dimensions—the extent to which work is explanatory, focusing on identifying and estimating causal effects, and the degree of consideration given to testing predictions of outcomes—and how these two priorities can complement, rather than compete with, one another. Our second contribution is to advocate that computational social scientists devote more attention to combining prediction and explanation, which we call integrative modelling, and to outline some practical suggestions for realizing this goal.

Suggested Citation

  • Jake M. Hofman & Duncan J. Watts & Susan Athey & Filiz Garip & Thomas L. Griffiths & Jon Kleinberg & Helen Margetts & Sendhil Mullainathan & Matthew J. Salganik & Simine Vazire & Alessandro Vespignani, 2021. "Integrating explanation and prediction in computational social science," Nature, Nature, vol. 595(7866), pages 181-188, July.
  • Handle: RePEc:nat:nature:v:595:y:2021:i:7866:d:10.1038_s41586-021-03659-0
    DOI: 10.1038/s41586-021-03659-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03659-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03659-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Simini & Gianni Barlacchi & Massimilano Luca & Luca Pappalardo, 2021. "A Deep Gravity model for mobility flows generation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Malgorzata J. Krawczyk & Mateusz Libirt & Krzysztof Malarz, 2024. "Analysis of scientific cooperation at the international and intercontinental level," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4983-5002, August.
    3. Yan, Jason & Hall, Seventy F. & Sage, Melanie & Du, Yuhao & Joseph, Kenneth, 2024. "A computational social science approach to understanding predictors of Chafee service receipt," Children and Youth Services Review, Elsevier, vol. 158(C).
    4. Ahmed Abbasi & Jeffrey Parsons & Gautam Pant & Olivia R. Liu Sheng & Suprateek Sarker, 2024. "Pathways for Design Research on Artificial Intelligence," Information Systems Research, INFORMS, vol. 35(2), pages 441-459, June.
    5. Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
    6. Gary Charness & Brian Jabarian & John List, 2023. "Generation Next: Experimentation with AI," Artefactual Field Experiments 00777, The Field Experiments Website.
    7. Cerqua, Augusto & Letta, Marco, 2022. "Local inequalities of the COVID-19 crisis," Regional Science and Urban Economics, Elsevier, vol. 92(C).
    8. Simon Willcock & Javier Martinez-Lopez & Norman Dandy & James M. Bullock, 2021. "High Spatial-Temporal Resolution Data across Large Scales Are Needed to Transform Our Understanding of Ecosystem Services," Land, MDPI, vol. 10(7), pages 1-6, July.
    9. Miguel G. Folgado & Veronica Sanz, 2022. "Exploring the political pulse of a country using data science tools," Journal of Computational Social Science, Springer, vol. 5(1), pages 987-1000, May.
    10. Isabelle Bonhoure & Anna Cigarini & Julián Vicens & Bàrbara Mitats & Josep Perelló, 2023. "Reformulating computational social science with citizen social science: the case of a community-based mental health care research," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    11. Salomi Samsudeen & Mohammed Hasan Ali & C. Chandru Vignesh & M. M. Kamruzzaman & Chander Prakash & Tamizharasi Thirugnanam & J. Alfred Daniel, 2023. "Context-specific discussion of Airbnb usage knowledge graphs for improving private social systems," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-30, March.
    12. Grossmann, Igor & Rotella, Amanda A. & Hutcherson, Cendri & Sharpinskyi, Konstantyn & Varnum, Michael E. W. & Achter, Sebastian K. & Dhami, Mandeep & Guo, Xinqi Evie & Kara-Yakoubian, Mane R. & Mandel, 2023. "Insights into the accuracy of social scientists' forecasts of societal change," Other publications TiSEM c14f4a4a-b105-46b3-90f7-f, Tilburg University, School of Economics and Management.
    13. Oriol J. Bosch & Melanie Revilla, 2022. "When survey science met web tracking: Presenting an error framework for metered data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 408-436, December.
    14. Renáta Németh, 2023. "A scoping review on the use of natural language processing in research on political polarization: trends and research prospects," Journal of Computational Social Science, Springer, vol. 6(1), pages 289-313, April.
    15. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    16. Tavishi Priyam & Tao Ruan & Qin Lv, 2023. "Demographic-Based Public Perception Analysis of Electric Vehicles on Online Social Networks," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    17. Benjamin W. Domingue & Klint Kanopka & Radhika Kapoor & Steffi Pohl & R. Philip Chalmers & Charles Rahal & Mijke Rhemtulla, 2024. "The InterModel Vigorish as a Lens for Understanding (and Quantifying) the Value of Item Response Models for Dichotomously Coded Items," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 1034-1054, September.
    18. Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
    19. Elizabeth Dolan & James Goulding & Harry Marshall & Gavin Smith & Gavin Long & Laila J. Tata, 2023. "Assessing the value of integrating national longitudinal shopping data into respiratory disease forecasting models," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Nelson P. Rayl & Nitish R. Sinha, 2022. "Integrating Prediction and Attribution to Classify News," Finance and Economics Discussion Series 2022-042, Board of Governors of the Federal Reserve System (U.S.).
    21. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
    22. Rory Gibb & Felipe J. Colón-González & Phan Trong Lan & Phan Thi Huong & Vu Sinh Nam & Vu Trong Duoc & Do Thai Hung & Nguyễn Thanh Dong & Vien Chinh Chien & Ly Thi Thuy Trang & Do Kien Quoc & Tran Min, 2023. "Interactions between climate change, urban infrastructure and mobility are driving dengue emergence in Vietnam," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:595:y:2021:i:7866:d:10.1038_s41586-021-03659-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.