IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp1565-1580.html
   My bibliography  Save this article

Measuring the energy intensity of domestic activities from smart meter data

Author

Listed:
  • Stankovic, L.
  • Stankovic, V.
  • Liao, J.
  • Wilson, C.

Abstract

Household electricity consumption can be broken down to appliance end-use through a variety of methods such as modelling, sub-metering, load disaggregation or non-intrusive appliance load monitoring (NILM). We advance and complement this important field of energy research through an innovative methodology that characterises the energy consumption of domestic life by making the linkages between appliance end-use and activities through an ontology built from qualitative data about the household and NILM data. We use activities as a descriptive term for the common ways households spend their time at home. These activities, such as cooking or laundering, are meaningful to households’ own lived experience. Thus, besides strictly technical algorithmic approaches for processing quantitative smart meter data, we also draw on social science time use approaches and interview and ethnography data. Our method disaggregates a households total electricity load down to appliance level and provides the start time, duration, and total electricity consumption for each occurrence of appliance usage. We then make inferences about activities occurring in the home by combining these disaggregated data with an ontology that formally specifies the relationships between electricity-using appliances and activities. We also propose two novel standardised metrics to enable easy quantifiable comparison within and across households of the energy intensity and routine of activities of interest. Finally, we demonstrate our results over a sample of ten households with an in-depth analysis of which activities can be inferred with the qualitative and quantitative data available for each household at any time, and the level of accuracy with which each activity can be inferred, unique to each household. This work has important applications from providing meaningful energy feedback to households to comparing the energy efficiency of households’ daily activities, and exploring the potential to shift the timing of activities for demand management.

Suggested Citation

  • Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1565-1580
    DOI: 10.1016/j.apenergy.2016.09.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916313897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    2. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    3. Murray, D.M. & Liao, J. & Stankovic, L. & Stankovic, V., 2016. "Understanding usage patterns of electric kettle and energy saving potential," Applied Energy, Elsevier, vol. 171(C), pages 231-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
    2. Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
    3. Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. Li, Dandan & Li, Jiangfeng & Zeng, Xin & Stankovic, Vladimir & Stankovic, Lina & Xiao, Changjiang & Shi, Qingjiang, 2023. "Transfer learning for multi-objective non-intrusive load monitoring in smart building," Applied Energy, Elsevier, vol. 329(C).
    5. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    6. Du, Feng & Yue, Hong & Zhang, Jiangfeng, 2023. "Influence of advertisement control to residential energy savings in large networks," Applied Energy, Elsevier, vol. 333(C).
    7. Zhao, Bochao & Ye, Minxiang & Stankovic, Lina & Stankovic, Vladimir, 2020. "Non-intrusive load disaggregation solutions for very low-rate smart meter data," Applied Energy, Elsevier, vol. 268(C).
    8. Vavouris, Apostolos & Guasselli, Fernanda & Stankovic, Lina & Stankovic, Vladimir & Gram-Hanssen, Kirsten & Didierjean, Sébastien, 2024. "A complex mixed-methods data-driven energy-centric evaluation of net-positive households," Applied Energy, Elsevier, vol. 367(C).
    9. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    10. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    11. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
    12. Wang, Shuangyuan & Li, Ran & Evans, Adrian & Li, Furong, 2020. "Regional nonintrusive load monitoring for low voltage substations and distributed energy resources," Applied Energy, Elsevier, vol. 260(C).
    13. Yang, Lu & Xie, Pengli & Bi, Chongke & Zhang, Ronghui & Cai, Bowen & Shao, Xiaowei & Wang, Rongben, 2020. "Household power consumption pattern modeling through a single power sensor," Renewable Energy, Elsevier, vol. 155(C), pages 121-133.
    14. Liu, Chao & Akintayo, Adedotun & Jiang, Zhanhong & Henze, Gregor P. & Sarkar, Soumik, 2018. "Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network," Applied Energy, Elsevier, vol. 211(C), pages 1106-1122.
    15. Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
    16. Besagni, Giorgio & Borgarello, Marco, 2018. "The determinants of residential energy expenditure in Italy," Energy, Elsevier, vol. 165(PA), pages 369-386.
    17. Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
    18. Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
    19. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    20. Todic, Tamara & Stankovic, Vladimir & Stankovic, Lina, 2023. "An active learning framework for the low-frequency Non-Intrusive Load Monitoring problem," Applied Energy, Elsevier, vol. 341(C).
    21. Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    22. Máté János Lőrincz & José Luis Ramírez-Mendiola & Jacopo Torriti, 2021. "Impact of Time-Use Behaviour on Residential Energy Consumption in the United Kingdom," Energies, MDPI, vol. 14(19), pages 1-32, October.
    23. Ahmadi-Karvigh, Simin & Ghahramani, Ali & Becerik-Gerber, Burcin & Soibelman, Lucio, 2018. "Real-time activity recognition for energy efficiency in buildings," Applied Energy, Elsevier, vol. 211(C), pages 146-160.
    24. Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
    25. Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    2. Anders Dalén & Jan Krämer, 2017. "Towards a User-Centered Feedback Design for Smart Meter Interfaces to Support Efficient Energy-Use Choices," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(5), pages 361-373, October.
    3. Stephen Snow & Richard Bean & Mashhuda Glencross & Neil Horrocks, 2020. "Drivers behind Residential Electricity Demand Fluctuations Due to COVID-19 Restrictions," Energies, MDPI, vol. 13(21), pages 1-20, November.
    4. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    5. Burchell, Kevin & Rettie, Ruth & Roberts, Tom C., 2016. "Householder engagement with energy consumption feedback: the role of community action and communications," Energy Policy, Elsevier, vol. 88(C), pages 178-186.
    6. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    7. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    8. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    10. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    11. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    12. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.
    13. Valeriy Makarov & Albert Bakhtizin, 2014. "The Estimation Of The Regions’ Efficiency Of The Russian Federation Including The Intellectual Capital, The Characteristics Of Readiness For Innovation, Level Of Well-Being, And Quality Of Life," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 9-30.
    14. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    15. Bardsley, Nicholas & Büchs, Milena & James, Patrick & Papafragkou, Anastasios & Rushby, Thomas & Saunders, Clare & Smith, Graham & Wallbridge, Rebecca & Woodman, Nicholas, 2019. "Domestic thermal upgrades, community action and energy saving: A three-year experimental study of prosperous households," Energy Policy, Elsevier, vol. 127(C), pages 475-485.
    16. Kristine Edgar Danielyan & Samvel Grigoriy Chailyan, 2019. "Delineation of Effectors Impact on The Human Brain Derived Phosphoribosylpyrophosphate Synthetase-1 Activity," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 24(1), pages 17918-17926, December.
    17. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    18. Mohammad AL-Zoubi, 2018. "The Role of Technology, Organization, and Environment Factors in Enterprise Resource Planning Implementation Success in Jordan," International Business Research, Canadian Center of Science and Education, vol. 11(8), pages 48-65, August.
    19. Damgaard, Mette Trier & Nielsen, Helena Skyt, 2018. "Nudging in education," Economics of Education Review, Elsevier, vol. 64(C), pages 313-342.
    20. Brown, Christopher J. & Markusson, Nils, 2019. "The responses of older adults to smart energy monitors," Energy Policy, Elsevier, vol. 130(C), pages 218-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1565-1580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.