IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v67y2020icp189-206.html
   My bibliography  Save this article

Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China

Author

Listed:
  • Lin, Boqiang
  • Wang, Yao

Abstract

The rapid and massive process of urbanization in China has made the energy consumption of the residential sector an important motivator in national energy consumption. As the most important part of household energy consumption, electricity and its demand-side management play fundamental roles when exploring the methods of energy reform in China. Based on the framework of household production theory, this paper estimates the elasticities of Chinese residential electricity from 2006 to 2016 by using the data of 286 cities, and the first difference generalized method of moment estimator is employed. The results show that the demand for residential electricity is inelastic to price and is mainly affected by total expenditure, price of appliance and temperature. We also find that factors impacting electricity consumption vary among regions, and the demand is elastic to price change with the samples of the lowest domestic product. With the elasticity we estimated, a Ramsey tariff is calculated and compared with the current tariff, and the subsidy for residential electricity consumption is also analyzed. Based on the results, we propose to raise the price appropriately, and suggest the implementation of diversified pricing schemes according to regional characteristics to control the consumption by realizing the price mechanism, and to promote energy-saving and emission reduction in the residential sector.

Suggested Citation

  • Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
  • Handle: RePEc:eee:reveco:v:67:y:2020:i:c:p:189-206
    DOI: 10.1016/j.iref.2020.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056020300320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2020.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    2. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    3. González-Eguino, Mikel, 2015. "Energy poverty: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 377-385.
    4. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    5. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2012. "Estimation of elasticity price of electricity with incomplete information," Energy Economics, Elsevier, vol. 34(3), pages 627-633.
    6. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    7. John M. Piotrowski & David Coady & Justin Tyson & Rolando Ossowski & Robert Gillingham & Shamsuddin Tareq, 2010. "Petroleum Product Subsidies; Costly, Inequitable, and On the Rise," IMF Staff Position Notes 2010/05, International Monetary Fund.
    8. Dilaver, Zafer & Hunt, Lester C, 2011. "Modelling and forecasting Turkish residential electricity demand," Energy Policy, Elsevier, vol. 39(6), pages 3117-3127, June.
    9. Hung, Ming-Feng & Huang, Tai-Hsin, 2015. "Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing," Energy Economics, Elsevier, vol. 48(C), pages 168-177.
    10. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    11. Wang, Zhaohua & Wang, Xiaomeng & Guo, Dongxue, 2017. "Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work?," Energy Policy, Elsevier, vol. 102(C), pages 430-439.
    12. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    13. Kazuhiko Hayakawa, 2008. "On the Effect of Nonstationary Initial Conditions in Dynamic Panel Data Models," Hi-Stat Discussion Paper Series d07-245, Institute of Economic Research, Hitotsubashi University.
    14. Nahata, Babu & Izyumov, Alexei & Busygin, Vladimir & Mishura, Anna, 2007. "Application of Ramsey model in transition economy: A Russian case study," Energy Economics, Elsevier, vol. 29(1), pages 105-125, January.
    15. Shi, Xinjie, 2019. "Inequality of opportunity in energy consumption in China," Energy Policy, Elsevier, vol. 124(C), pages 371-382.
    16. Ye, Yuxiang & Koch, Steven F. & Zhang, Jiangfeng, 2018. "Determinants of household electricity consumption in South Africa," Energy Economics, Elsevier, vol. 75(C), pages 120-133.
    17. Burke, Paul J. & Kurniawati, Sandra, 2018. "Electricity subsidy reform in Indonesia: Demand-side effects on electricity use," Energy Policy, Elsevier, vol. 116(C), pages 410-421.
    18. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    19. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    20. Cialani, Catia & Mortazavi, Reza, 2018. "Household and industrial electricity demand in Europe," Energy Policy, Elsevier, vol. 122(C), pages 592-600.
    21. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    22. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    23. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    24. Nakajima, Tadahiro & Hamori, Shigeyuki, 2010. "Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States," Energy Policy, Elsevier, vol. 38(5), pages 2470-2476, May.
    25. Flaig, Gebhard, 1990. "Household production and the short- and long-run demand for electricity," Energy Economics, Elsevier, vol. 12(2), pages 116-121, April.
    26. Hayakawa, Kazuhiko, 2009. "On the effect of mean-nonstationarity in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 153(2), pages 133-135, December.
    27. Silva, Susana & Soares, Isabel & Pinho, Carlos, 2017. "Electricity demand response to price changes: The Portuguese case taking into account income differences," Energy Economics, Elsevier, vol. 65(C), pages 335-342.
    28. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    29. W. M. Corden, 1957. "The Calculation Op The Cost Op Protection," The Economic Record, The Economic Society of Australia, vol. 33(64), pages 29-51, April.
    30. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric D. & Reyna, Janet, 2019. "Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change," Applied Energy, Elsevier, vol. 236(C), pages 1-9.
    31. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    32. Qiang Ji & Jianping Li & Xiaolei Sun, 2019. "New Challenge and Research Development in Global Energy Financialization," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(12), pages 2669-2672, September.
    33. Sun, Chuanwang & Ouyang, Xiaoling, 2016. "Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China," Energy Policy, Elsevier, vol. 88(C), pages 56-63.
    34. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    35. Massimo Filippini, 1999. "Swiss residential demand for electricity," Applied Economics Letters, Taylor & Francis Journals, vol. 6(8), pages 533-538.
    36. Lee, Chien-Chiang & Chiu, Yi-Bin, 2013. "Modeling OECD energy demand: An international panel smooth transition error-correction model," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 372-383.
    37. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Estimation of Japanese price elasticities of residential electricity demand, 1990–2007," Energy Economics, Elsevier, vol. 40(C), pages 433-440.
    38. Vesterberg, Mattias, 2016. "The hourly income elasticity of electricity," Energy Economics, Elsevier, vol. 59(C), pages 188-197.
    39. Lin, Boqiang & Du, Zhili, 2015. "How China׳s urbanization impacts transport energy consumption in the face of income disparity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1693-1701.
    40. Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
    41. Borozan, Djula, 2018. "Regional-level household energy consumption determinants: The european perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 347-355.
    42. Campbell, Alrick, 2018. "Price and income elasticities of electricity demand: Evidence from Jamaica," Energy Economics, Elsevier, vol. 69(C), pages 19-32.
    43. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    44. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    45. Sueyoshi, Toshiyuki, 2010. "An agent-based approach with collaboration among agents: Estimation of wholesale electricity price on PJM and artificial data generated by a mean reverting model," Energy Economics, Elsevier, vol. 32(5), pages 1025-1033, September.
    46. Elliott, Robert & Sun, Puyang & Zhu, Tong, 2019. "Electricity prices and industry switching: Evidence from Chinese manufacturing firms," Energy Economics, Elsevier, vol. 78(C), pages 567-588.
    47. Lucia, Julio J. & Torró, Hipòlit, 2011. "On the risk premium in Nordic electricity futures prices," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 750-763, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Li & Zhang, Xin-Hua & Zhang, Yue-Jun, 2023. "Designing the pricing mechanism of residents’ self-selection sales electricity based on household size," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 860-878.
    2. Proskuryakova, Liliana & Starodubtseva, Alena & Bianco, Vincenzo, 2020. "Modelling a household tariff for reducing sectoral cross-subsidies in the Russian power market," Energy, Elsevier, vol. 213(C).
    3. Boqiang Lin & Kai Wei, 2022. "Does Use of Solid Cooking Fuels Increase Family Medical Expenses in China?," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    4. Wei, Kai & Lin, Boqiang, 2024. "Spatial evolution of global household clean cooking energy transition: Convergent clubs and drivers," Applied Energy, Elsevier, vol. 372(C).
    5. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    6. Wang, Yao & Lin, Boqiang, 2021. "Performance of alternative electricity prices on residential welfare in China," Energy Policy, Elsevier, vol. 153(C).
    7. Ali, Syed Ahtsham & Alharthi, Majed & Hussain, Hafezali Iqbal & Rasul, Farhat & Hanif, Imran & Haider, Jahanzaib & Ullah, Saad & ur Rahman, Saeed & Abbas, Qaiser, 2021. "A clean technological innovation and eco-efficiency enhancement: A multi-index assessment of sustainable economic and environmental management," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    8. Tsao, Yu-Chung & Ai, Ho Thi Thu & Lu, Jye-Chyi & Wang, Chao, 2024. "Game theory-based electricity pricing decisions incorporating prosumer energy preferences and renewable portfolio standard," Energy, Elsevier, vol. 306(C).
    9. Wang, Yao & Lin, Boqiang, 2022. "Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China," Applied Energy, Elsevier, vol. 321(C).
    10. Xie, Li & Kong, Chun, 2023. "The social welfare effect of electricity user connection price policy reform," Applied Energy, Elsevier, vol. 346(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yao & Lin, Boqiang, 2021. "Performance of alternative electricity prices on residential welfare in China," Energy Policy, Elsevier, vol. 153(C).
    2. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
    3. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    4. Saha, Debalina & Bhattacharya, Rabindra N., 2018. "An analysis of elasticity of electricity demand in West Bengal, India: Some policy lessons learnt," Energy Policy, Elsevier, vol. 114(C), pages 591-597.
    5. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    6. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    7. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    8. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    9. Lin, Boqiang & Wang, Yao, 2020. "Does energy poverty really exist in China? From the perspective of residential electricity consumption," Energy Policy, Elsevier, vol. 143(C).
    10. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    11. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    12. Wang, Xiaolei & Wei, Chunxin & Wang, Yanhua, 2022. "Does the current tiered electricity pricing structure still restrain electricity consumption in China's residential sector?," Energy Policy, Elsevier, vol. 165(C).
    13. Wang, Yao & Lin, Boqiang, 2022. "Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China," Applied Energy, Elsevier, vol. 321(C).
    14. Ayertey, Winfred & Sharifi, Ayyoob & Yoshida, Yuichiro, 2024. "The impact of increase in block pricing on electricity demand responsiveness: Evidence from Ghana," Energy, Elsevier, vol. 288(C).
    15. Wang, Li & Zhang, Xin-Hua & Zhang, Yue-Jun, 2023. "Designing the pricing mechanism of residents’ self-selection sales electricity based on household size," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 860-878.
    16. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    17. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    18. Aslam, Misbah & Ahmad, Eatzaz, 2023. "Untangling electricity demand elasticities: Insights from heterogeneous household groups in Pakistan," Energy, Elsevier, vol. 282(C).
    19. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    20. Zihan Zhang & Enping Li & Guowei Zhang, 2023. "How Efficient China’s Tiered Pricing Is for Household Electricity: Evidence from Survey Data," Sustainability, MDPI, vol. 15(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:67:y:2020:i:c:p:189-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.