IDEAS home Printed from https://ideas.repec.org/p/ags/aaea03/22152.html
   My bibliography  Save this paper

Networking Your Way to a Better Prediction: Effectively Modeling Contingent Valuation Survey Data

Author

Listed:
  • Bergtold, Jason S.
  • Taylor, Daniel B.
  • Bosch, Darrell J.

Abstract

The purpose of this paper is to empirically compare the out-of-sample predictive capabilities of artificial neural networks, logit and probit models using dichotmous choice contingent valuation survey data. The authors find that feed-forward backpropagation artificial neural networks perform relatively better than the binary logit and probit models with linear index functions. In addition, guidelines for modeling contingent valuation survey data and how to estimate median WTP using artificial neural networks are provided.

Suggested Citation

  • Bergtold, Jason S. & Taylor, Daniel B. & Bosch, Darrell J., 2003. "Networking Your Way to a Better Prediction: Effectively Modeling Contingent Valuation Survey Data," 2003 Annual meeting, July 27-30, Montreal, Canada 22152, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea03:22152
    DOI: 10.22004/ag.econ.22152
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/22152/files/sp03be09.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.22152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dasgupta, Chanda Ghose & Dispensa, Gary S. & Ghose, Sanjoy, 1994. "Comparing the predictive performance of a neural network model with some traditional market response models," International Journal of Forecasting, Elsevier, vol. 10(2), pages 235-244, September.
    2. Cooper, Joseph C., 2002. "Flexible Functional Form Estimation of Willingness to Pay Using Dichotomous Choice Data," Journal of Environmental Economics and Management, Elsevier, vol. 43(2), pages 267-279, March.
    3. Spanos,Aris, 1999. "Probability Theory and Statistical Inference," Cambridge Books, Cambridge University Press, number 9780521424080.
    4. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    5. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
    6. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    7. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
    8. Terry L. Kastens & Allen M. Featherstone, 1996. "Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 400-415.
    9. Hanemann, W Michael, 1991. "Willingness to Pay and Willingness to Accept: How Much Can They Differ?," American Economic Review, American Economic Association, vol. 81(3), pages 635-647, June.
    10. Mark Yuying An, 2000. "A Semiparametric Distribution for Willingness to Pay and Statistical Inference with Dichotomous Choice Contingent Valuation Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 487-500.
    11. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    12. Estanislao Arana & Pedro Delicado & Luis Martí, 1999. "Validation procedures in radiological diagnostic models. Neural network and logistic regression," Economics Working Papers 414, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Goss, Ernest Preston & Ramchandani, Harish, 1998. "Survival Prediction in the Intensive Care Unit: a Comparison of Neural Networks and Binary Logit Regression," Socio-Economic Planning Sciences, Elsevier, vol. 32(3), pages 189-198, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergtold, Jason S. & Ramsey, Steven M., 2015. "Neural Network Estimators of Binary Choice Processes: Estimation, Marginal Effects and WTP," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205649, Agricultural and Applied Economics Association.
    2. Steven M. Ramsey & Jason S. Bergtold, 2021. "Examining Inferences from Neural Network Estimators of Binary Choice Processes: Marginal Effects, and Willingness-to-Pay," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1137-1165, December.
    3. Pere Riera & Raúl Brey & Guillermo Gándara, 2008. "Bid design for non-parametric contingent valuation with a single bounded dichotomous choice format," Hacienda Pública Española / Review of Public Economics, IEF, vol. 186(3), pages 43-60, October.
    4. Mora Rodriguez, Jhon James, 2013. "Introduccion a la teoría del consumidor [Introduction to Consumer Theory]," MPRA Paper 48129, University Library of Munich, Germany, revised 08 Jul 2013.
    5. Richard T. Carson, 2011. "Contingent Valuation," Books, Edward Elgar Publishing, number 2489.
    6. Huang, Ju-Chin & Nychka, Douglas W. & Smith, V. Kerry, 2008. "Semi-parametric discrete choice measures of willingness to pay," Economics Letters, Elsevier, vol. 101(1), pages 91-94, October.
    7. Arana, Jorge E. & Leon, Carmelo J., 2005. "Flexible mixture distribution modeling of dichotomous choice contingent valuation with heterogenity," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 170-188, July.
    8. Álvarez Díaz, Marcos & González Gómez, Manuel & Saavedra González, Ángeles & De Uña Álvarez, Jacobo, 2010. "On dichotomous choice contingent valuation data analysis: Semiparametric methods and Genetic Programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 145-156, April.
    9. Cooper, Joseph C., 2002. "Flexible Functional Form Estimation of Willingness to Pay Using Dichotomous Choice Data," Journal of Environmental Economics and Management, Elsevier, vol. 43(2), pages 267-279, March.
    10. Maria Iacovou, 2002. "Class Size in the Early Years: Is Smaller Really Better?," Education Economics, Taylor & Francis Journals, vol. 10(3), pages 261-290.
    11. Nayga, Rodolfo M., Jr. & Aiew, Wipon & Woodward, Richard T., 2004. "Willingness to Pay for Irradiated Food: A Non Hypothetical Market Experiment," 84th Seminar, February 8-11, 2004, Zeist, The Netherlands 24995, European Association of Agricultural Economists.
    12. van den Berg, Gerard J. & van Vuuren, Aico, 2010. "The effect of search frictions on wages," Labour Economics, Elsevier, vol. 17(6), pages 875-885, December.
    13. Richard T. Carson & Miko_aj Czajkowski, 2014. "The discrete choice experiment approach to environmental contingent valuation," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 9, pages 202-235, Edward Elgar Publishing.
    14. McGuirk, Anya M. & Spanos, Aris, 2004. "Revisiting Error Autocorrelation Correction: Common Factor Restrictions And Granger Causality," 2004 Annual meeting, August 1-4, Denver, CO 20176, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Isabel Proenca & Joao Santos Silva, 2005. "Parametric and semiparametric specification tests for binary choice models: a comparative simulation study," Econometrics 0508008, University Library of Munich, Germany.
    16. Golan, Amos & Judge, George & Perloff, Jeffrey, 1997. "Estimation and inference with censored and ordered multinomial response data," Journal of Econometrics, Elsevier, vol. 79(1), pages 23-51, July.
    17. Mamine, Fateh & Fares, M'hand & Minviel, Jean Joseph, 2020. "Contract Design for Adoption of Agrienvironmental Practices: A Meta-analysis of Discrete Choice Experiments," Ecological Economics, Elsevier, vol. 176(C).
    18. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    19. Satimanon, Monthien & Lupi, Frank, 2010. "Comparison of Approaches to Estimating Demand for Payment for Environmental Services," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61288, Agricultural and Applied Economics Association.
    20. Hugo Roche, 1999. "El Complejo Cultural SODRE de Montevideo: La Disposición a Pagar por un Bien Público Mixto," Documentos de Trabajo (working papers) 1799, Department of Economics - dECON.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea03:22152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.