IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/137081.html
   My bibliography  Save this paper

Exploration of machine learning algorithms for maritime risk applications

Author

Listed:
  • Knapp, S.
  • van de Velden, M.

Abstract

To manage and pre-empt incident risks effectively by maritime stakeholders, predicted incident probabilities at ship level have different application aspects such as enhanced targeting for ship inspections, improved domain awareness and improving risk exposure assessments for strategic planning and asset allocations to manage risk exposure. Using a unique and comprehensive global dataset from 2014 to 2020 of 1.2 million observations, this study explores 144 model variants from the field of machine learning (18 random forest variants for 8 incident endpoints of interest) with the aim to enhance prediction capabilities to be used in maritime applications. An additional point of interest is to determine and highlight the relative importance of over 500 evaluated covariates. The results differ for each endpoint of interest and confirm that random forest methods improve prediction capabilities, based on a full year of out of sample evaluation. Targeting the top 10% most risky vessels would lead to an improvement of predictions by 2.7 to 4.9 compared to random selection. Balanced random forests and random forests with balanced training variants outperform regular random forests where the end selection of the variants also depends on the aggregation type and use of probabilities in the application areas of interest. The most important covariate groups to predict incident risk are related to beneficial ownership, the safety management company, size and age of the vessel and the importance of these factors is similar across the endpoint of interest considered here

Suggested Citation

  • Knapp, S. & van de Velden, M., 2021. "Exploration of machine learning algorithms for maritime risk applications," Econometric Institute Research Papers 2021-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:137081
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/137081/EI2021-03-Sabine-Knapp-Michel-vd-Velden.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christiaan Heij & Sabine Knapp, 2018. "Predictive power of inspection outcomes for future shipping accidents – an empirical appraisal with special attention for human factor aspects," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(5), pages 604-621, July.
    2. Vander Hoorn, Stephen & Knapp, Sabine, 2015. "A multi-layered risk exposure assessment approach for the shipping industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 21-33.
    3. Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
    4. Sabine Knapp & Philip Hans Franses, 2007. "A global view on port state control: econometric analysis of the differences across port state control regimes," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(5), pages 453-482, October.
    5. Christiaan Heij & Sabine Knapp, 2019. "Shipping inspections, detentions, and incidents: an empirical analysis of risk dimensions," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(7), pages 866-883, October.
    6. Heij, C. & Knapp, S., 2018. "Predictive power of inspection outcomes for future shipping accidents," Econometric Institute Research Papers EI2018-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heij, C. & Knapp, S., 2018. "Shipping Inspections, Detentions, and Accidents: An Empirical Analysis of Risk Dimensions," Econometric Institute Research Papers 2018-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Knapp, S. & Franses, Ph.H.B.F. & B. Whitby (Bruce), 2020. "Measuring the effect of perceived corruption on detention and incident risk – an empirical analysis," Econometric Institute Research Papers EI 2020-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    5. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    7. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Lutz Kretschmann, 2020. "Leading indicators and maritime safety: predicting future risk with a machine learning approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-22, December.
    9. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    11. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    12. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    13. Xueni Gou & Jasmine Siu Lee Lam, 2019. "Risk analysis of marine cargoes and major port disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 497-523, December.
    14. Cariou, Pierre & Wolff, Francois-Charles, 2015. "Identifying substandard vessels through Port State Control inspections: A new methodology for Concentrated Inspection Campaigns," Marine Policy, Elsevier, vol. 60(C), pages 27-39.
    15. Yang, Zaili & Ng, Adolf K.Y. & Wang, Jin, 2014. "A new risk quantification approach in port facility security assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 72-90.
    16. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    17. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    18. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    19. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    20. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:137081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.