IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/d5cb664d-5859-44db-a621-e37c0dc6cbfe.html
   My bibliography  Save this paper

Bagging and boosting classification trees to predict churn

Author

Listed:
  • Lemmens, A.

    (Tilburg University, School of Economics and Management)

  • Croux, C.

    (Tilburg University, School of Economics and Management)

Abstract

No abstract is available for this item.

Suggested Citation

  • Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:d5cb664d-5859-44db-a621-e37c0dc6cbfe
    as

    Download full text from publisher

    File URL: https://repository.tilburguniversity.edu/bitstreams/3359c290-b4f1-47b3-af30-8a0a27511739/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    2. Franses,Philip Hans & Paap,Richard, 2010. "Quantitative Models in Marketing Research," Cambridge Books, Cambridge University Press, number 9780521143653, November.
    3. Athanassopoulos, Antreas D., 2000. "Customer Satisfaction Cues To Support Market Segmentation and Explain Switching Behavior," Journal of Business Research, Elsevier, vol. 47(3), pages 191-207, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    2. David A. Schweidel & George Knox, 2013. "Incorporating Direct Marketing Activity into Latent Attrition Models," Marketing Science, INFORMS, vol. 32(3), pages 471-487, May.
    3. Michis Antonis A, 2009. "Regression Analysis of Marketing Time Series: A Wavelet Approach with Some Frequency Domain Insights," Review of Marketing Science, De Gruyter, vol. 7(1), pages 1-43, July.
    4. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    5. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    6. Edwin Van Gameren & Michiel Ras & Evelien Eggink & Ingrid Ooms, 2005. "The demand for housing services in the Netherlands," ERSA conference papers ersa05p327, European Regional Science Association.
    7. Moslehpour, Massoud & Lin, Yi Hsin & Nguyen, Thi Le Huyen, 2017. "Top purchase intention priorities of Vietnamese LCC passengers: Expectations and satisfaction," MPRA Paper 81635, University Library of Munich, Germany.
    8. Wei-Shong Lin & Jui-Ling Huang & Margaret L. Sheng, 2014. "How the Organizational Goals Affect Knowledge Management," International Journal of Management, Knowledge and Learning, International School for Social and Business Studies, Celje, Slovenia, vol. 3(1), pages 3-22.
    9. Franses, Philip Hans, 2006. "Forecasting in Marketing," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 18, pages 983-1012, Elsevier.
    10. Manfred Bruhn & Silke Michalski, 2003. "Analyse von Kundenabwanderungen — Forschungsstand, Erklärungsansätze, Implikationen," Schmalenbach Journal of Business Research, Springer, vol. 55(5), pages 431-454, August.
    11. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    12. Peter C. Verhoef & Martin Heijnsbroek & Joost Bosma, 2017. "Developing A Service Improvement System for the National Dutch Railways," Interfaces, INFORMS, vol. 47(6), pages 489-504, December.
    13. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    14. Clarijs, P. & Hogeling, B. & Franses, Ph.H.B.F. & Heij, C., 2007. "Evaluation of survey effects in pre-election polls," Econometric Institute Research Papers EI 2007-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Magnus Söderberg & Makoto Tanaka, 2012. "Spatial price homogeneity as a mechanism to reduce the threat of regulatory intervention in locally monopolistic sectors," Working Papers hal-00659458, HAL.
    16. Heij, C. & Knapp, S., 2014. "Effects of wind strength and wave height on ship incident risk: regional trends and seasonality," Econometric Institute Research Papers EI2014-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Sibdari, Soheil & Pyke, David F., 2010. "A competitive dynamic pricing model when demand is interdependent over time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 330-338, November.
    18. Romina Gambacorta & Maria Iannario, 2012. "Statistical models for measuring job satisfaction," Temi di discussione (Economic working papers) 852, Bank of Italy, Economic Research and International Relations Area.
    19. Zhang, Hao & Liang, Xiaoning & Wang, Shiquan, 2016. "Customer value anticipation, product innovativeness, and customer lifetime value: The moderating role of advertising strategy," Journal of Business Research, Elsevier, vol. 69(9), pages 3725-3730.
    20. Ming-Chih Tsai & Rico Merkert & Jiana-Fu Wang, 2021. "What drives freight transportation customer loyalty? Diverging marketing approaches for the air freight express industry," Transportation, Springer, vol. 48(3), pages 1503-1521, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:d5cb664d-5859-44db-a621-e37c0dc6cbfe. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.