IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/12011.html
   My bibliography  Save this paper

SVM-Maj: a majorization approach to linear support vector machines with different hinge errors

Author

Listed:
  • Groenen, P.J.F.
  • Nalbantov, G.I.
  • Bioch, J.C.

Abstract

Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector machine (SVM) problem, study its effective aspects, and propose varieties of convex loss functions such as the standard for SVM with the absolute hinge error as well as the quadratic hinge and the Huber hinge errors. We present an iterative majorization algorithm that minimizes each of the adaptations. In addition, we show that many of the features of an SVM are also obtained by an optimal scaling approach to regression. We illustrate this with an example from the literature and do a comparison of different methods on several empirical data sets.

Suggested Citation

  • Groenen, P.J.F. & Nalbantov, G.I. & Bioch, J.C., 2007. "SVM-Maj: a majorization approach to linear support vector machines with different hinge errors," Econometric Institute Research Papers EI 2007-49, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:12011
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/12011/ei2008-49.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van der Kooij, Anita J. & Meulman, Jacqueline J. & Heiser, Willem J., 2006. "Local minima in categorical multiple regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 446-462, January.
    2. Hunter D.R. & Lange K., 2004. "A Tutorial on MM Algorithms," The American Statistician, American Statistical Association, vol. 58, pages 30-37, February.
    3. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    4. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 471-503, December.
    5. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Groenen, P.J.F. & Bioch, J.C. & Nalbantov, G.I., 2006. "Nonlinear support vector machines through iterative majorization and I-splines," Econometric Institute Research Papers EI 2006-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    4. Groenen, P.J.F. & Kaymak, U. & van Rosmalen, J.M., 2006. "Fuzzy clustering with Minkowski distance," Econometric Institute Research Papers EI 2006-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Kuroda, Masahiro & Mori, Yuichi & Iizuka, Masaya & Sakakihara, Michio, 2011. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 143-153, January.
    6. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    7. Naomichi Makino, 2015. "Generalized data-fitting factor analysis with multiple quantification of categorical variables," Computational Statistics, Springer, vol. 30(1), pages 279-292, March.
    8. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    9. Antonello D’Ambra & Pietro Amenta & Anna Crisci & Antonio Lucadamo, 2022. "The generalized Taguchi’s statistic: a passenger satisfaction evaluation," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 41-60, April.
    10. Ranjith Vijayakumar & Ji Yeh Choi & Eun Hwa Jung, 2022. "A Unified Neural Network Framework for Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1503-1528, December.
    11. Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
    12. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    13. Paola Zappa & Emma Zavarrone, 2010. "Social interaction and volunteer satisfaction: an exploratory study in primary healthcare," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 57(2), pages 215-231, June.
    14. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    15. Sanjeena Subedi & Drew Neish & Stephen Bak & Zeny Feng, 2020. "Cluster analysis of microbiome data by using mixtures of Dirichlet–multinomial regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1163-1187, November.
    16. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    17. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    18. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    19. Javier Armando Pineda & Carlos Eduardo Acosta, 2011. "Calidad Del Trabajo: Aproximaciones Teóricas Y Estimación De Un Índice Compuesto," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 29(65), pages 60-105, June.
    20. Vu, Duy & Aitkin, Murray, 2015. "Variational algorithms for biclustering models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 12-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:12011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.